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Overview

Topicality. In the 1930s, at the University of Hamburg, W. Blaschke set the stage for ex-
ploring the application of probabilistic concepts in deriving geometrically significant results,
particularly for convex bodies (see the preface of [1]). The existence of a bijection between
bounded convex bodies (up to translations and reflections) and their chord length distribution
functions turned out to be not always possible, even for polygons (see [2]). Subsequently,
in 1986, G. Matheron [3] put forth a conjecture suggesting that, rather than relying on the
chord length distribution function, the covariogram of a convex body in R™, or equivalently,
its orientation-dependent chord length distribution (ODCLD) function, could serve as such
a deterministic characteristic. Regarding this hypothesis, pivotal results emerged until 2009
(see [4]-[7]), demonstrating rejection for n > 4 but validation for all planar convex do-
mains and three-dimensional convex polytopes. Since then, the examination of orientation-
dependent chord length distribution and covariogram for diverse geometric shapes has ac-
quired significant importance within the scope of researching the recognition of a convex
body based on the distribution of characteristics within its lower-dimensional sections (for
recent results see [8]-[13]). It constitutes a central task in geometric tomography, a field of
mathematics introduced by R. Gardner in 2006 [14].

This thesis not only extends the mentioned line of inquiry to a novel class of convex
bodies but also, in line with Blaschke’s legacy, explores other stochastic models that estab-
lish connections between the geometric and probabilistic characteristics of convex bodies.
The diverse nature of the models leads to various problems requiring a unique approach to
overcome difficulties of different types and levels. An example that served as motivation for
this work was a classical result by R. Sulanke [15] concerning the probability mass function
of the number of intersection points generated by three random lines within a planar convex
body. Increasing the number of lines significantly elevates the complexity of determining
the aforementioned probability mass function.

Another well-known random variable involved in this research is the Euclidean distance
between two random points chosen independently and uniformly from D C R¢ (see [1],
chapter 4). Extensive research has been conducted on this random variable for various
bounded bodies D, including computation of the average distance within a cube [16] (known
as Robbins constant), on the surface of a cube [17], within a hyperball [18], as well as bound-
ing the average distance within a hypercube [19] or furthermore, within compact subsets of
R? with unit diameter [18]. The results known for a cube were extended to the 4th and 5th
dimensions [20] but for higher dimensions the increase of algebraic complexity associated
with derivation procedures was a strong limiting factor. In dimensions d < 3, closed-form
expressions are obtained for the probability density function (PDF) of D4 (D) in [21]-[26]
for numerous geometric shapes of D. For d-dimensional convex bodies, a relation between
integrals for the powers of Dy(ID) and random chord length in D is well known (see [1], pp.



46-47). A connection between the chord length distribution of an infinitely long cylinder and
that of its base is considered in [27]. Relations between the chord length distribution func-
tion of I and the distribution function of D4(ID) are explored in [23] and [28], conditional
moments of D4(ID) are introduced and studied in [29]. A unified approach for determining
the PDF of D4(ID) for typical compact sets is suggested in [30]. It also provides a good list
of references for related results of theoretical and applied character.

Objectives.

+ Enlarge the class of convex bodies that admit an explicit representation of their OD-
CLD function and the covariogram in terms of their geometric characteristics.

* For a planar convex body D, explore the relationship between the probabilities of a
certain number of random lines producing a given number of intersection points inside
D and a family of geometric invariants of D.

+ Extend the concept of a covariogram from bounded convex bodies to the entire space
R? ensuring that the correspondence between the covariogram and interpoint distance,
observed in bounded convex bodies, is maintained.

Research methods. Methods from Integral and Stochastic Geometry and Probability
Theory are applied.

Scientific novelty. All main results are new. A summary is provided in this booklet
right after the main content.

Theoretical and practical value. The main results of the work are theoretical. Possible
practical applications may refer to medicine, stereology, crystallography, spatial analysis,
and machine learning.

Approbation. The main results of the work were presented

* regularly, during the scientific seminars at the Chair of Probability Theory and Math-
ematical Statistics at Yerevan State University;

* in the AMU annual session dedicated to the 100th anniversary of the Armenian Math-
ematical Union, Nov 6, 2021;

+ in the International Conference, Mathematics in Armenia: Advances and Perspec-
tives, 111, July 2-8, 2023;

+ in the YSU university-wide sub-conference of the Center for Mathematical and Ap-
plied Research, April 2-4, 2024.



Publications. The results presented in the thesis are published in five papers, comprising
four scientific articles and an abstract from an international conference thesis. The list is
accessible within this booklet, positioned at the conclusion of the references section.

The structure and the content of the thesis. The thesis consists of an introduction,
three chapters, a summary, and references. The number of references is 56. The thesis
comprises 111 pages.

The Main Content of the Thesis

The introduction represents the literature review and the overview of the main results.

The first chapter focuses on finding an explicit representation of the ODCLD function
for any right prism based on an arbitrary convex quadrilateral. Sections 1.1-1.3 showcase
preliminaries and our early discoveries [36] regarding the ODCLD functions of a rectangular
parallelepiped and a right prism based on a right trapezoid.

The necessary terminology to build the ODCLD function of a quadrilateral is provided in
Section 1.4. In a Cartesian plane, for any convex quadrilateral D there are points B(b, 0), b >
0,Ae{(z,y): >0,y >0},and C € {(x,y) : > 0,y > 0} such that D is congruent
to the quadrilateral O AC B, where O is the origin of coordinates. We will call such a quadri-
lateral an image of D. The side OB will be called the base, the sides OA and BC will be
called legs, o and 3 will stand for the inclination angles (measured anticlockwise from the
positive direction of z-axis) of the legs O A and BC, respectively. If o < 3 then the quadri-
lateral O ABC will be called a standard image of D. If oy and 3 are the inclination angles
of the diagonals OC and B A, respectively, then we use the notation D; = [b, ag, «, 3, Bo]
for that standard image of D. The values ag, «, 3, By determine another parameter -y, the
inclination angle of AC. We classify the standard images into two categories based on the
value of v. Due to convexity of D, either 0 < v < ayg, or By < v < . If the first inequality
occurs, we will call the standard image to be of Type 1, otherwise - of Type 2.

In the upcoming text, L,, will stand for the n-dimensional Lebesgue measure, and S™
for the unit sphere in R™™!. Let [, be the subspace of R? spanned by the vector ¢ =
(cosp,sing) € S'. By ¢ we denote the orthogonal complement of [, in R2. For any
y € ¢t let l, +y be the line parallel to ¢ and passing through y. For a bounded convex set
E C R?, we denote x(I, + y) = L1((l, + y) N E), and, if the line I, + y has a common
segment with F, then we will say that it makes a chord in E of length x (I, + ).

Let Iz () be the orthogonal projection of E onto ¢*. Assuming that y is uniformly
distributed over IIg(¢), the ODCLD function in direction ¢ for E is defined by

L
FE(J;»@) =



where 115 () = {y € p(p) : x(lp +y) < 2} and bg(p) = L1 (ILe(0)).
Since l,—x = l,, we can assume ¢ € [0, 7). To determine the ODCLD function
Fp, (x, ) we use the quantities

zo(p) = ;221 x(ly +y) and z1(p) = max Xy + ),

where ¢, is the set of vectors y € ¢ so that the line [, + y passes through a vertex of Dy
and makes a chord of positive Lebesgue measure there. The quantity 21 (¢) coincides with
the length of the longest chord

xmax(‘p) yEIlIIlli,X(Lp) X(ltp + y)7
and any chord of length zm.x(¢) is known as a ¢-diameter of D, (see [31], p. 248). We
extend this concept: in the upcoming text, where convenient, we will call it a first-order
p-diameter of D, and any chord of length () will be called a second-order p-diameter
of D,.

In addition to 2 () and x; (), we introduce three more orientation-dependent charac-
teristics o (), £(¢), and ¢1 () of the standard image Dy = [b, ag, v, 8, Bp]- These charac-
teristics are non-negative continuous functions and satisfy to bp_ () = £o () +£(p) + 41 ()
for all p € [0, 7). We call them supplementary o-measures of D,. The characteristics are
defined case by case in Section 1.4. Readers, already familiar with the concept of X-ray (re-
fer to Chapter 1 of [14]), may benefit while contemplating the origins and significance of the
newly introduced orientation-dependent characteristics. To determine the ODCLD function,
acquiring orientation-dependent X-rays is sufficient (see, for example, [32]). These X-rays,
which exhibit convex functions with up to three graph pieces for a convex quadrilateral, can
be accurately determined using p-diameters and supplementary p-measures as necessary
parameters.

The first compressed results are presented in Section 1.5, where the ODCLD function and
the covariogram of a convex quadrilateral are found in terms of the lengths of orientation-
dependent diameters and supplementary measures.

Theorem 1.5.1. Let D be a standard image of a convex quadrilateral D and 0 < ¢ < .
If 1, x( are the lengths of respectively the first and the second-order p-diameters, and
by, ¢, U1 are the supplementary p-measures of D, then

0, if <0
by 1t .
1 %-kx—l z, if 0<a<zo(p)
o (2,0) = 57— - '
by + L+ 0, f0+ug+ﬁel, if zo(p) <z < z1(p)
Tr1 — Xo 1
bo+ 0+ 14, if 2> x1(p)



Corollary 1.5.1. The function Fp_(-, @) is continuous on the real axis if and only if the
p-diameter of Dy is unique. If for some @, the p-diameter of D is not unique then Fp (-, @)
holds a jump discontinuity at Tmax (). The jump is equal to

_

bo+0+10
Below, the notation Cp, (¢, ) stands for the covariogram Cp_(t¢), where t > 0.
Theorem 1.5.2. Let D be a standard image of a convex quadrilateral D and 0 < ¢ < .

If ©1, xg are the lengths of respectively the first and the second-order p-diameters, and
by, U, Uy are the supplementary @-measures of D, then Cp_(t, ) =

¢ 1
obot (ot )bl o n gy M 8 e i <t ca
2 2\x9g 11
—1/¢ 4
- <1+ )(xl—t)2, if 2o <t<wxp-
2 X1 r1 — Xo
0, if ¢t>a

Forastandard image D; = [b, ag, v, 3, Bo], consider A = {a, 8}, A = {ap, fo}, T =
{0, «, 7, B}, which are the sets of the inclination angles of the legs, diagonals, and the sides
of Dy, respectively. Forany ¢ € [0, 7), we define the functions X, : AxAx¥\{p} — R
and L, : (A X A)U (A x A) — Rby

bsinz sin(y — 2)

_ bsin(z — @) siny
sin(y — x) sin(z — )’ ’

X<p(.’£, Y, Z) = Lga(xa y) - sin(x — y)

In Section 1.6, all five orientation-dependent characteristics, xo (@), z1(¥), £o(¥), £(p), £1(p)
are comfortably expressed by X, and L, for both Type 1 and Type 2 images.

The last section of the first chapter is devoted to the question of finding the ODCLD
function and the covariogram of a right quadrilateral prism. Denote by D}; the right prism
{(z,y,2) : (z,y) € Ds, 0 < z < h}, where D; is a standard image of a convex quadri-
lateral. For a vector w = (cos @ cosf, sinpcosf, sinf) € S?, let w be the orthogonal

complement of {tw : t € R} in R3, and p: (¢, 0) be the orthogonal projection of D" onto

the plane w.

We define the chord length distribution function in direction w for DQ by

Fyn(t.0.6) Loy € Ipn(0,0) : X(l(p0) T y) < 1}
D\l ¥, = )
° bD" (907 9)

where [(,, 9) + v is the line that passes through y € w and has direction vector w, x(! (p,0) T
y) = L1 ((lp.0) +y) NDL), and by (0, 0) = La(Tpn (0, 6)).




Denote xmax(p,0) =  max l + ).
(,0) yen,,g(@,e)X( (v.0) T 9)

Theorem 1.7.1. Fora ¢ € [0, 7), let x1 and x be the lengths of the first and the second-
order p-diameters of D, respectively. Let by, U, {1 be the supplementary @-measures of D,
and denote bp, = Lo+{+{1. Then, for the directionw = (cos ¢ cos §, sinpcosf, sinf), 0 <
0 < % and the prism D};, the following statements take place:

(a) If tan~1 mio <0< Zand0 <t < Tmax(p,0), or0 <60 < tan™! % and 0 < t <
xo secl, then

ait + aqt?
Fpu(t,p,0) =
oz (£:,0) |D,|| sin 6 + bp, hcosd’
where
14 l 14 14
a; = h(o + 1> cos? 6 + bp, sin20, as = 7% <0 + 1) sin @ cos? 6;
i) I 2 Zo I

(b) If0 < 6 < tan~' L gnd zgsech <t < ZTmax (¢, 0), then xo < x1 and

zo

co+ 1t + cot?
||| sin@ + bp_hcos§’

FDQ’ (tv @ 0) =

where

14
co(hcosﬁerOsinG)(éo 0 >,
2 Tr1 — Xo

61:(h00529+$15in29)( ¢ _|_€1), 62:—§Sin900S29(€+€1)_

r1 — Zo Tl T1 — To T

Corollary 1.7.1. Let

w(,0) = Ly <{y € o (,0) - (o) +) = a:mw»).

The function Fpn (-, ¢, 0) is continuous on the real axis if and only if u(p, 0) = 0. Otherwise,
if u(p,0) > 0 for some pair (o, 0), then Fpn (-, ,0) has ajump discontinuity at Tumax (i, 0).
The jump is equal to
p(p, 0)
D] sin® + bp_ hcos

Theorem 1.7.2. Fora ¢ € [0, 7), let x1 and xq be the lengths of the first and the second-
order p-diameters of D, respectively. Let g, U, {1 be the supplementary p-measures of D,
and denote bp, = Lo+{+{1. Then, for the directionw = (cos ¢ cos ), sinpcosf, sinf), 0 <




0 < 3, the covariogram Cpn (tw) = Cpn(t, ¢, 0) of the prism D" has the following repre-
sentation:

(a) If tan~! ?}2 <0< Zand0 <t < Tmax(p,0), or0 < 0 < tan™! % and 0 < t <
xo secl, then

1/t ¢
Con(t,0,0) = (DS|| — bp, cosB -t + <° + 1) c0529-t2)(hsin9~t);
s 2 o T

() If0 <6 <tan"! m’—; and xgsect <t < Tmax(p, ), then zo < z1 and

CDQL(t,go,H):l( : —|—gl)(xl—cos&-t)2(h—sin0-t).

2 r1 — o X

Consider an open convex planar domain D with perimeter L and area F'. We will assume
that D contains the origin of the Cartesian plane, and for a line g C R?, we denote by (p, ¢)
the polar coordinates of the foot of the perpendicular from the origin onto g. Let [D] be the
set of all lines in R? that meet D. Let x(g) = g N D be the chord in D produced by the line
g, and |x(g)| be the length of x(g).

We consider N,,, the number of intersection points of n random lines in D, given that
all n lines meet D, and denote p,j, = P(N,, = k). It is easy to obtain pa; = ZTE (see, for
example, [1], p. 53). The formulas for intersection probabilities psy, suggested in [1], p. 65,
contain a mistake. The correct formulas are

8L—U  3U-12, _ G6rFL—3U
3 y P32 = 3 , P31 = Ta

P33 =

established earlier by R. Sulanke in [15], where

I = / Ix(9)]?dg and U = u(g1, g2)dg1dga,
[D] g1Ng2€D
where u(g1, g2) denotes the perimeter of the convex quadrilateral verticed at the points of
intersections of the lines g; and go with the boundary D. The measure element dg is
interpreted as dg = dpdp.

The second chapter of the thesis is dedicated to deriving explicit formulas for proba-
bilities pyy, where &k = 1,2,...,6, expressed in terms of newly defined invariants of D.
To achieve this, we employed Ambartzumian’s combinatorial algorithm ([33], chapter 5
and [34]). After preliminaries (Section 2.1), we adapted the combinatorial algorithm to the
specific context in Section 2.2. Towards the end of the section, Sulanke’s formulas are re-
produced effortlessly.



New invariants are introduced in Section 2.3, then pys and p45 are computed.
Definition 2.3.1. For any g1 N g2 € D we define

d(g1,92) = Ix(g)| + Ix(g2)l, e(g1,92) = n([x(91)] N [x(g2)]),

u(g1,g92) = lﬁ(conv( U7, g; N D))
and for any three lines g1, g2, g3 such that g; N g; € D, 1 <1 < j < 3 we define

)

v(g1, 92, 93) = |0(conv( U}, gi N D)),

where conv(X) denotes the convex hull of X C R?, and |0Y| denotes the perimeter of a
convex domain'Y .

The new definition of u(g1, g2) coincides with the one we have used so far.
Along with the well-known invariants [, = f[D] Ix(g)|¥dg, k = 0,1,2,... let’s con-
sider new ones:

Dk:/ d* (g1, g2)dg1dga, Ck:/ (g1, g2)dg1dgs,
91Ng2€D g1Ng2€D

Uk:/ u* (g1, g2)dg1dgo, Vk:/ v* (g1, g2, 93)dg1dgadgs.
g1Ng2€D g9iNg; €D, 1<i<5<3

Theorem 2.3.1.

3Us +9C5 — 12D5 + 4V; 36D5 — 99Uy — 15Cy — 12V
AL ) P = 214 '

Pae =

The remaining probabilities py, £ < 4 are computed in Section 2.4. Given g1 N g €
D, we denote by p1, p2, p3, p4 the lengths of four consecutive sides of the quadrilateral
conv (( g1Uga)N 8D) . To avoid ambiguity, we will always assume that the first two sides lie
in different half-planes with respect to g; . If two lines, e.g. g2 and g3, are from [D] but do not
meet inside D, then d, d2 will stand for the lengths of the diagonals of conv (( g2U gg)ﬂaD) R
and s1, so will represent the lengths of the sides of the quadrilateral which are different from

X(92); x(g3)-
We extend the set of invariants of D by three more:

R= / ((p1 + p2)(p3 + pa) + (p2 + p3)(pa + p1))dgrdga,
g1Ng2€D
Qs = / (81 + s2)(d1 + d2 — 81 — $2)dgadygs,
g2Ng3ZD

10



Qd = / (dl + dg)(d1 + d2 — 81 — Sz)dggdgg.
92Ngs¢D

Theorem 2.4.1. Let péﬁ) be the probability that g1,92,93,94 € [D] produce 4 in-

tersection points inside D and some three of them intersect each other inside D. Then
1 2

Dag = p514) + p4(14)» where

3Us 4+ Co

1
p514)_ 4(2‘/1_4D2+02+U2) and p()_L4< 5

— 813 —2R—Qs).
Three intersection points made by four lines from [D] can occur in three ways:

Event 1: The lines produce three chords each possessing two intersection points, and one

containing no intersection point;

Event 2: The lines produce two chords each possessing 2 intersection points, and the other

two each possessing 1 intersection point;

Event 3: The lines produce three chords each possessing 1 intersection point, and one pos-

sessing 3 intersection points.

We denote by pfé), pflg), pfl; the probabilities of Event 1, Event 2, and Event 3, respec-
tively.

Theorem 2.4.2.

P43 = P4(113) +Pz(1? + pé(l?;)’

where
(1) (2) _ 12
p43 - 4(ClL_‘/1)a p43 = L4 (QS+2R_U2)7

64

L4
Two intersection points generated by four lines are possible in two scenarios:

Event 1: One chord possesses 2 intersection points, two of the chords possess 1 intersection

point each, and one chord does not possess any intersection point;

Event 2: Each chord of the four lines possesses exactly 1 intersection point.

Let the probabilities of the above mentioned events be p ) and pfg), respectively.
Theorem 2.4.3.

Py = 4(02—4DQ—U2) (Qd+2R)

1 2
P42 = pz(g) + p4(12)7

where 5
piy = dps2 — 75 (Ca — 4Dy — Uz — 4(Qs +2R)),

11



2) 1272F2% 4814 3
Po = =i T oA
L L 4L
Theorem 2.4.4.

1
(UQ —Cy+ 12D2) - Z(Pz(éx) + 2194(1?)'

9y 6U; 66U,
par = 2p31 — 2y — 75 t

6
Finally, the probability of having no intersection points inside D is pyg = 1 — ka.

k=1
In Section 2.5, we expressed the invariants V3 and I3 by intersection probabilities. The

value of I3 is known (by Crofton, [1], p. 47) to be equal to 3F2 but we did not need it below.
Theorem 2.5.1. The following identities hold.:

4
Vi =L*(pss — ipilg)), I3 = % (4ps3 +p4(§) - Pz(é,))-

The formulas obtained for intersection probabilities motivated us to compute invariants
of D through simulations. For example, we used Python 3 software to approximate the
values of I, Uy, I3, and V; for the unit disk. Simulations code can be found here: http:
/Irb.gy/1wei7h.

Expressions of all the new invariants in terms of 7 for a disc of radius r are established
in Section 2.6. As a result, the following theorem is proved.

Theorem 2.6.1. If D is a disc with radius r then

_ 1 17 _ 29 1
P46 = 4 871'27 P45 = 871'2 4a
43 7  _ 23 (2)_1 3
D44 ﬁ §7 Paq ﬁ 1, p44—§—ﬁa
_ 29 w_2 1 o . 35 @_1 17
Pas =27 e P13 = g T ) Pas 42 P8 T 9T g
7 121 (1)73 13 (2)71 17
p42—1—827p42 5 55 D42 Z_W’
29 1 _ 13 5
Pa1 32 1’ Pao = o2 3

For a bounded body D C R?, consider the Euclidean distance between two random
points chosen independently and uniformly from D. We denote it by D4(ID).

12



Along with D4(ID), let us consider the covariogram of D, denoted by Cp(t), where
t € R?. When D is a bounded convex body with a non-empty interior in R%, then the two
considered characteristics of D are interrelated as follows:

hdfl

fDd(]D))(h) = W /Sd71 C]D)(hu)du, h > 0, (1)

where S?~! is the (d — 1)-dimensional unit sphere in R?, centered at the origin, and Ly (D)
is Lebesgue d-measure of .

In the third chapter of the thesis, we extended the concepts of covariogram Cy and in-
terpoint distance Dy(ID) from bounded convex bodies to the entire space R? and established
a relation between them.

The first problem that arises in our way is the nature of randomness of choosing a point
from D = R?. The uniform distribution is no longer applicable to this case and therefore
we naturally replace it with a multivariate normal distribution.

The second obstacle lies in the challenge of applying the language and sense of geom-
etry to define the covariogram of R?. We will define it analytically based on the following
observation. If D is a convex body and P, P are chosen uniformly and independently from
D, then it is easy to check (see, for example, [26]) that

Cp(t)
f 1— /2 t = )
which can be equivalently written as
(}D(t)
fpi—p,(t) = . 2

Thus, the covariogram should be a positive function defined on the entire space that satisfies
(2).

If X is a d-variate normal random vector having mean g and covariance matrix 3 then
we will denote this condition by X ~ Ng(p, 3). We denote A = [A1, Aa, ..., \g]T, where
A1 > A2 > ... > Mg > 0 are the eigenvalues of 3. We assume p = 0 and the diagonal of
consisting of 1s. If X7, Xa ~ N4(0,X) are independent, we denote Dy = || X1 — X2,
where || - || is the Euclidean norm in R

After preliminaries, in Section 3.2, we independently addressed the scenario of uncorre-
lated coordinates and deduced the density function and moments of the interpoint distance,
drawing upon a result obtained in [35], p. 95. We easily established that if 3 = I; then
Dy ~ GG(2,d,2), where I is the identity d X d matrix, and GG(a,d, p) is the general-
ized Gamma distribution. Since the moments of the generalized Gamma distribution were
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known, as a corollary, for moments of D;, we immediately concluded that if 3 = I 4, then

E(D}) =2 (%) 0,1,2
= ,7=0,1,2,....
’ r(s)

In general, when X # I, even when d = 2, this method becomes impractical because
of the demanding computations associated with complicated recursive formulas. In Section
3.3, we established new results, including integral representations for the distribution and
density functions of the Euclidean distance between two d-dimensional Gaussian points,
characterized by correlated coordinates through a covariance matrix.

Theorem 3.3.1. Let Fip,(3X, ) be the distribution function of Dy and E4(\, R) be the
ellipsoid

{y = [y1,52, - val" + Myf + A2y + .. + Ay < R}

1
Fp (X =
ps(B, R) = (2f) /g“R)eXP< 1Y y>dy,R>0

Corollary 3.3.1. The probability density function of D is representable as follows:

Rdfl R2 T 1
YR) = —F—5 exp| — —u X u |du.
xR0 = 1 s [ oo (=5 )
As an application of the obtained integral representations, in Section 3.4, we determined
the probability density function of the Euclidean distance between two bivariate Gaussian
points in the case when there is an inter-coordinate correlation p.

Theorem 3.4.1. If 3 = E ﬂ , then

Then

R2

o2 ) = 5 ()

oo x?k
D=1 2 e

is the modified Bessel function of the first kind of order zero.

As another application, we established lower and upper bounds for the moments of D,
in terms of the largest and the smallest eigenvalues of the covariance matrix.

Theorem 3.4.2. Let E (DY) be the r-th moment of D 4. Then

where

2T(4) )

OT (%) A7
r(@) =2

<E(D}) < r=0,1,2,....
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Finally, in Section 3.5, we defined the normal covariogram of R? and established an analo-

gous relationship to (1).
Definition 3.5.1. Let Py, P2 ~ N4(0, X) be independent and fp, _p, be the probability
density function of Py — Ps. The function Cx; : R? — (0, +00) that satisfies to

_ Ox(t)
- C3(0)

f’P17P2 (t)

will be called the normal covariogram of R? associated with .

Taking into account (1), the following theorem argues that the normal covariogram nat-
urally extends the concept of covariogram.

Theorem 3.5.1. Let X be the covariance matrix of a non-singular d-variate normal
distribution and C's; be the normal covariogram of R¢ associated with 3. Then

Os:(t) = (2v/7)Y 2|2 exp ( ithlt), t cR?

and
LA (Ru)du, R >0
o) (E,R):i/ Cs(Ru)du, R > 0.
‘ CZ(0) Juu s
Remark 3.5.1. It is remarkable that Cr,(t) = (2y/7)%exp ( — 3||t||3). This illus-
trates that if R? is considered as a space of points with uncorrelated coordinates then the

covariogram of the space is naturally independent on the direction of translation.
Summary

The main results obtained in the thesis are presented in three chapters.

» For any convex quadrilateral, the notions of first and second-order p-diameters,
along with three supplementary measures, are introduced and evaluated for each
direction ¢. In terms of these five characteristics, explicit representations of the
orientation-dependent chord length distribution (ODCLD) function and the covari-
ogram are established for any convex quadrilateral and any right prism based on it.
Continuity criteria for the ODCLD functions are established per direction.

* Based on R. Ambartzumian's combinatorial algorithm, a new approach is suggested
for finding the probabilities p,i of n random lines producing k intersection points
inside a given convex planar domain D. A family of geometric characteristics of D,
invariant under Euclidean motions, is found such that the probabilities pyy, are ex-
pressed in terms of those invariants. When D is a disc with a radius of r, the simplest
forms of the invariants are derived, and the exact numerical values of p4i are com-
puted.

15



o Integral representations for the distribution and probability density functions of the
Euclidean distance between two independent d-dimensional Gaussian points with cor-
related coordinates governed by a covariance matrix are obtained. In addition to
other applications, the concept of a covariogram is extended to the entire space R?
such that the correspondence between the covariogram and interpoint distance, ob-
served in bounded convex bodies, is maintained.
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Wdthnthnud

UwnbUwhununtpjntup uyhpywé £ R™-nwd ntnnighy dwpdhuubph Gpypwgwhwywu W hw-
Jwuwywuwjhu puncpwanhgsubnh Ywuwbnh nuncduwuhpnepjwlp” indjuwp Jwnduhu wnUgynn
nwnpbn ywunwhwlwl Jaénipynctuutnh UGpgpwydwdp: Unwgyt) Gu hGuinlyw hhduw-
ywl wprynitupubpp.

e Ywdwjwywl ntnnighy pwnwuywl hwdwp uGpdniddt) GU wnwehlu W Gpynpnpn
Uwnah ¢ - mpwdwadtiph W tiptip |pwgnighs swidinudutinh quinwthwnputipp,
nnpnup hwyytb| Gu jnLpwpwugnin ¢ nunnnipjwlu hwdwn: hugwtu nLnnighy
pwnwulwl, wjuwtu £ wyn hhdplu nltubgnn nunhn wphgdwutph hwdwp,
unwgytb| Gu nLnnnLpeynLtuhg Ywhudwd jwnph Gpywnpnpjwu pw2fudwl (ODCLD)
$nuyghwih L ynywphngpwuh pwgwhuwjn Ubpywywgnedutn” wpunwhwjnywéd
U24wd hhug puncpwagphguGpnyd: Spwéd nennnipjwl hwdwp unnwgyt) Gu
ODCLD $niuyghwutph wupunhwunncpjwl hwjwnwuhubn:

e M. Qwdpwpancdjwuh Yyndphuwwinnp wignphpUdh Yhpwndwdp wnwewnyytbi
EUunp Uninbignud” hwipdbint D hwnp ntnnighy inhpnyph Ubpunwd n wywwnw-
hwywl nLnhnutph® &£ hwundwu YEwntn wnwewgubint hwywuwywunipjnLlup:
Quuybl £ D-p’ EYyhrywl 2wupdndubph bywwndwdp hujwphwuwn Gpypw-
swithwwU puncpwagphgutph Uh punnwuhp, wjuwhuhU, np pa hwuwuwyw-
UnipjnLtulbnu wpunwhwjnybUu wyn hujwphwuwnutpny: Wu nbwpnid, Gpp
D-U r 2wnwynny 2nppwl £, Lpwd huywphwUuwnlutGph wywnpqwognyu wpunw-
hwjinnipynluutpp W paxe hwjwlbwywuncpyntuutph 62gphwn pywihu wpdtplutpp
gunuytb| Gu:

e d-swthwuh qunrujwl Gpyne wuywhu yintph dhple Gnwé EYyhnjwl hGnw-
Jnpnpjwl pw2iudwl W hwwlwywlUwjhu funnipywl $ncuyghwubnh hw-
Jwn unnwgyt| GU huinGgpwiwjhbu UGpyuwjwgnidutn, npuntn hwayh Ewnuyb
wwwnwhwywl YGnh Ynnpnhuwwnubnh dhol gnpdénn huwpwdnn Ynptyw-
ghwl tnpywd Yynjuwphwghnu dwuwnphgnd: W) Yyhpwnnipntuubnh htun JGyunkn,
yndqwnphngpwuh guwnwithwpl punujuyt) £ wjuwtu, np D uwhdwlwithwy
ntnnighy dwpduh ynqwphngpwdh W dheytunwihu htnwynpnipjwl dhele
anpdnn Ywwp wwhwwuyh bwl D = R? nbwpnty:
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Pe3rome

I[I/ICCCPTE[HI/IH MOCBAIICHA U3YUCHUIO cBs3ei MCKAY T'€COMETPUICCKUMU U BEPOSITHOCT-
HBIMU XapaKTCPHUCTUKAMU BBITYKJIBIX TCJI € IMMPUBJICYCHUEM PA3JIMYHBIX CJ'Iy‘lafIHBIX BCJIN-
YHMH, KaCarOIIMUXCA JAaHHOT'O TCJIa. HOJ’Iy‘IeHLI CJICAYIOIINE OCHOBHBIC PE3YyJIbTAThI:

* JIns mpOU3BOIBHOTO BBITYKJIOTO Y€THIPEXYTONBbHUKA BBEICHBI TOHATUS (0-AUAMETPOB
MIEpBOTO ¥ BTOPOTO MOPSIKOB, @ TAKKE TPH JOIOIHUTEIbHBIE H3MEPEHNUS, KOTOpPBIC
BBIYHCIIECHBI JUIS JTI000T0 HampaBleHHs . B TepMHHAX 3THX ISTH XapaKTEPUCTHK,
YCTaHOBIICHBI SIBHBIC NIPE/ICTABICHNS (DYHKIIMM PACTIPENEIICHUS JTMHBI XOPbI 3aBH-
csmeit ot opuentaiu (ODCLD) i koBaprorpaMMBI AJIS BEIITYKJIOTO YEThIPEXYTOJlb-
HUKA U NIPSIMOH BBIMYKJIOH MPU3MBI C YETHIPEXYTOJIbHBIM OCHOBAaHHEM. YCTaHOBJICHBI
Kputepus HerrpepbiBHOCTH [Uist pyHKmit ODCLD npu 3a1anHOM HarlpaBJIeHHH.

* Ilyrem npumeHeHns KOMOMHATOPHOTO anroput™a P. AMOapuyMsiHa peayiokeH Ho-
BBII MTOIXO/ K HAXOXKACHUIO YHCEI Py, MPEACTABISIONINX BEPOITHOCTD, YTO 7 CIIy-
YaifHBIX IPSAMBIX 00pa3yroT pOBHO k TOYEK NepecedeHus BHYTPH 3aJaHHON BBITYKIIOH
wIockoit obmactu D. OOGHapyXeHO ceMeHCTBO T€OMETPUIECKIX XapaKTepucTuk D,
HWHBapUAHTHBIX OTHOCUTECIIBHO €BKJINJOBBIX HBI/I)KCHI/Iﬁ, TaKUX, YTO BEPOATHOCTHU P4k
BBIPaXKAIOTCsI Yepe3 9TH MHBapuaHThl. B cirydae, korna D mpexacrapisieT coOoi AUCK
pazmyca r, HaiAeHbl IPOCTEHIINE BEIPAKEHUS TS yIIOMSIHYTBIX HHBAPHAHTOB M TOY-
HbIE YMCIIOBBIC 3HAUCHUS BEPOSTHOCTEH Dy .

* Ilomy4eHs! HHTETpaIbHBIC PENCTABICHHS ISl (DYHKINI paclipeneneHns 1 IIOTHO-
CTH BEPOSITHOCTH €BKIIJOBOTO PACCTOSIHUS MEXKY JIBYMsI HE3aBUCHMBIMH d-MEPHBIMH
rayCCOBCKMMH TOYKaMHU C BO3MOXKHON KOppessIiyeii KOOpANHAT, OTIpeieIeHHOM KOBa-
puannoHHoM Matpuneit. [ToMrMo Apyrux npunokeHUH, KOHLENIK KOBAPHOIpaMMBbI
pacimpeHa TakuM 00pa3oM, 4TOOBI CBA3b, AEHCTBYIOIIAS MEXIY KOBApHOTPaMMOH 1

MCKTOYCYHBIM PACCTOAHHUEM OIPAHUYCHHOTO BBIITYKJIOI'O TCjIa ]D), COXpaHAIaCh IpU
D = R9.
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