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We have proved, that if 1003n ≥  is an arbitrary odd number and ϕ  is a 
splitting automorphism of period n  of group ( , )B m n  that has a prime order, then 
ϕ  is inner automorphism.  
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Definition. An automorphism ϕ  of G  is called splitting automorphism of 

period n , if = 1nϕ  and 
2 1

= 1
n

g g g gϕ ϕ ϕ −
⋅⋅⋅  for each g G∈ .   

If ϕ  is a splitting automorphism of period n  of a group G , then for every 
g G∈  the relation ( ) = 1ngϕ  holds in the holomorph ( )Hol G  of the group G . In 
particular, the identity automorphism of G  is a splitting automorphism of period 
n , iff the identity = 1nx  is satisfied in G . 

A well-known Theorem of O. Kegel states that any finite group that has a 
nontrivial splitting automorphism of prime period is nilpotent (see [1]). This result 
generalizes J. Tompson’s Theorem [2] on the nilpotency of finite group with an 
automorphism of prime order without fixed points. E. Khukhro proved that any 
solvable group having a nontrivial splitting automorphism of prime period is also a 
nilpotent group. (see [3]). 

If Γ  is any group satisfying the identical relation = 1nx , then the identities  
1 2 2 1 1( )( ) ( ) , =n n n n n nb a ba a ba a ba a a ba b− − − + − −⋅⋅ ⋅  

also hold in the group Γ . Consequently, each inner automorphism 
1Inn( ), ( ) =a ai i b a baΓ −∈  is a splitting automorphism of period n  of the group Γ . 

We are interested in the inverse question for splitting automorphisms of the 
free Burnside group ( , )B m n . By definition, a free Burnside group ( , )B m n  of 
period n  and rank m  has the following presentation  

1 2( , ) = , ,..., | = 1 ,n
mB m n a a a X〈 〉  

where X  runs over all words in 1 1 1
1 2{ , , , }.ma a a± ± ±…  
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The group ( , )B m n  is the quotient of the free group mF  of rank m  by the 

normal subgroup n
mF , generated by all n th powers of elements of mF . Each 

periodic group of period n  with m  generators is a quotient group of ( , )B m n . 
According to the fundamental Theorem of S.I. Adian that solves the Burnside 
problem (see [4]), for any odd 665n ≥  and > 1m  the group ( , )B m n  is infinite. A 
detailed review of studies on free Burnside groups is given by S.I. Adian in [5]. 

In 1991 S.V. Ivanov posed the following question: let > 1m  and n  is large 
enough odd number. Is it true that any splitting automorphism ϕ  of ( , )B m n  is 
inner (see Kourovka notebook [6], question 11.36, b)? 

We have proved the following theorem.   
T h e o r e m .  Let 1003n ≥  be an arbitrary odd number and ϕ  be a splitting 

automorphism of period n  of ( , )B m n . If the order of the automorphism ϕ  is a 
prime number, then ϕ  is inner.   

This Theorem immediately implies. 
Corollary. For any prime >n 997 and >1m  each splitting automorphism of 

the group ( , )B m n  is an inner automorphism.   
Outline of the Proof of the Main Result. In the paper [7] it was proved that 

for any >1m  and odd 1003n ≥  there exists a maximal normal subgroup N  of the 
free Burnside group ( , )B m n , such that the quotient ( , )/B m n N  is an infinite group, 
every proper subgroup of which is contained in some cyclic subgroup of order n . 
Denote by nM  the set of all such maximal normal subgroups N  of the free 
Burnside group ( , )B m n . The groups ( , )/B m n N , constructed in [7], are called 
Tarski monsters. In [8] it was shown that for every odd 1003n ≥  there is a 
continuum of non-isomorphic Tarski monsters of period n .  

The following statement, proved by the author in [9], plays a key role in the 
proof of the main result.  

Proposition 1. (see [9], Corollary 2) Let 1003n ≥  be an arbitrary odd 
number and ϕ  be an automorphism of the group ( , )B m n , such that ( ) =N Nϕ  for 
any .nN ∈M  Then ϕ  is inner automorphism.   

The following interesting results obtained by the author are also used in the 
proof.  

Proposition 2. Let :G Gϕ →  be an arbitrary automorphism and N  be a 
normal subgroup of G , such that the quotient /G N  is a non-abelian simple group. 
If the subgroups 1, ( ), , ( )kN N Nϕ ϕ −"  are pairwise distinct and ( ) = ,k N Nϕ  then 

the quotient group 
1

/ ( )
k

i

i
G Nϕ

=
∩  is decomposed into a direct product of subgroups 

1
/ ( )

k
i

j
i

N Nϕ
=
∩ , = 1,2,...,j k , where 

1
= ( )

k
i

j
i
i j

N Nϕ
=
≠

∩ . Moreover the quotient 

1
/ ( )

k
i

j
i

N Nϕ
=
∩  is isomorphic to /G N .   
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Proposition 3. If 1003n ≥  is an odd number and ϕ  is an arbitrary nontrivial 
splitting automorphism of period n  of ( , )B m n , then for every normal subgroup 

nN ∈M  the stabilizer relative to action of the cyclic group ϕ〈 〉  is nontrivial.   
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Վ. Ս. Աթաբեկյան.  Ազատ բեռնսայդյան խմբի տրոհող ավտոմորֆիզմներ  էջ. 62–64  
 

Ապացուցվել է, որ եթե  n≥1003   կենտ թիվ է և  ϕ-ն` B (m,n)  խմբի             
պարբերությամբ տրոհող ավտոմորֆիզմ, որն ունի պարզ կարգ, ապա  ϕ-ն 
ներքին ավտոմորֆիզմ է: 

 
В. С. Атабекян. Расщепляющие автоморфизмы свободных бернсайдовых групп 
                                                                                                                                 стр. 62–64 

 
Доказано, что если 1003n ≥  – произвольное нечетное число и ϕ  – 

произвольный расщепляющий автоморфизм периода n  группы ( , )B m n , кото-
рый  имеет  простой  порядок, то ϕ  является  внутренним  автоморфизмом. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


