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SPLITTING AUTOMORPHISMS OF FREE BURNSIDE GROUPS
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We have proved, that if »>1003 is an arbitrary odd number and ¢ is a
splitting automorphism of period n of group B(m,n) that has a prime order, then
@ is inner automorphism.
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Definition. An automorphism ¢ of G is called splitting automorphism of

period n,if ¢" =1 and gg‘”g"’2 '--g""H =1 foreach geG.

If ¢ is a splitting automorphism of period n of a group G, then for every
g €G the relation (pg)" =1 holds in the holomorph Hol(G) of the group G . In
particular, the identity automorphism of G is a splitting automorphism of period
n, iff the identity x" =1 is satisfied in G .

A well-known Theorem of O. Kegel states that any finite group that has a
nontrivial splitting automorphism of prime period is nilpotent (see [1]). This result
generalizes J. Tompson’s Theorem [2] on the nilpotency of finite group with an
automorphism of prime order without fixed points. E. Khukhro proved that any
solvable group having a nontrivial splitting automorphism of prime period is also a
nilpotent group. (see [3]).

If I is any group satisfying the identical relation x" =1, then the identities

b(a"'ba)(a*ba*)---(a”"'ba" ") a", a"ba" =b
also hold in the group 7 . Consequently, each inner automorphism
i,elnn(l), i (b)= a”'ba is a splitting automorphism of period » of the group 7.

We are interested in the inverse question for splitting automorphisms of the
free Burnside group B(m,n). By definition, a free Burnside group B(m,n) of
period n and rank m has the following presentation

B(m,n)=(a,,a,,...,a, | X" =1),

. + + +
where X runs over all words in {¢,"",a,",...,a,""}.
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The group B(m,n) is the quotient of the free group F,, of rank m by the

normal subgroup F, , generated by all nth powers of elements of F, . Each
periodic group of period n with m generators is a quotient group of B(m,n).
According to the fundamental Theorem of S.I. Adian that solves the Burnside
problem (see [4]), for any odd n > 665 and m >1 the group B(m,n) is infinite. A
detailed review of studies on free Burnside groups is given by S.I. Adian in [5].

In 1991 S.V. Ivanov posed the following question: let m >1 and » is large
enough odd number. Is it true that any splitting automorphism ¢ of B(m,n) is
inner (see Kourovka notebook [6], question 11.36, b)?

We have proved the following theorem.

Theorem. Let n>1003 be an arbitrary odd number and ¢ be a splitting
automorphism of period n of B(m,n). If the order of the automorphism ¢ is a
prime number, then ¢ is inner.

This Theorem immediately implies.

Corollary. For any prime n>997 and m >1 each splitting automorphism of
the group B(m,n) is an inner automorphism.

Outline of the Proof of the Main Result. In the paper [7] it was proved that
for any m>1 and odd n>1003 there exists a maximal normal subgroup N of the
free Burnside group B(m,n), such that the quotient B(m,n)/N is an infinite group,
every proper subgroup of which is contained in some cyclic subgroup of order .
Denote by M, the set of all such maximal normal subgroups N of the free
Burnside group B(m,n). The groups B(m,n)/N , constructed in [7], are called
Tarski monsters. In [8] it was shown that for every odd n>1003 there is a
continuum of non-isomorphic Tarski monsters of period .

The following statement, proved by the author in [9], plays a key role in the
proof of the main result.

Proposition 1. (see [9], Corollary 2) Let n>1003 be an arbitrary odd
number and ¢ be an automorphism of the group B(m,n), such that ¢(N)=N for
any N € M,. Then ¢ is inner automorphism.

The following interesting results obtained by the author are also used in the
proof.

Proposition 2. Let ¢:G — G be an arbitrary automorphism and N be a

normal subgroup of G, such that the quotient G/N 1is a non-abelian simple group.

If the subgroups N,@(N),---,0"'(N) are pairwise distinct and ¢* (N)=N, then
k .

the quotient group G /()¢'(N) is decomposed into a direct product of subgroups

i=1

ko ko .
N,/ Olga’ (N), j=12,..,k, where N,= Dlgo (N). Moreover the quotient
i#]

k i . . .
N, /(¢'(N) is isomorphic to G/N .

i=1
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Proposition 3. If n>1003 is an odd number and ¢ is an arbitrary nontrivial

splitting automorphism of period n of B(m,n), then for every normal subgroup

N e M, the stabilizer relative to action of the cyclic group () is nontrivial.

L=

b

o0
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B. C. Amabexan. Pacuenasironmye aBToMop¢u3Mbl cBOOOAHBIX OepHCAIOBBIX TPy
cTp. 62—64

Joxazano, uro ecomu n > 1003 — mpom3BOIBHOE HEUETHOE YHCIIO M @ —
MIPOU3BOJIBHBIN PaCIISIUIAIOINN aBTOMOP(U3M Meproaa 1 Tpymmbl B(m,n), KOTO-
pBIi MIMEET MPOCTOW TOPSAOK, TO ¢ SBJISAETCS BHYTPEHHHUM aBTOMOP(HHU3MOM.



