SOME RELATIONS BETWEEN THE μ-PARAMETERS OF REGULAR GRAPHS

N. N. DAVTYAN1 and R. R. KAMALIAN1,2

1Chair of Programming and Information Technologies of Ijevan Branch of the YSU, Armenia
2The Institute for Informatics and Automation Problems of NAS of the Republic of Armenia

We consider undirected, simple, finite, connected graphs. Some relations between the μ-parameters are obtained for the case of regular graphs.

MSC2010: 05C15.

Keywords: regular graph, proper edge coloring, interval spectrum, μ-parameters, game.

Introduction. We consider finite, undirected, connected graphs without loops and multiple edges containing at least one edge. For any graph G we denote by $V(G)$ and $E(G)$ the sets of vertices and edges of G, respectively. For any $x \in V(G)$ $d_G(x)$ denotes the degree of the vertex x in G. For a graph G $\delta(G)$ and $\Delta(G)$ denote the minimum and the maximum degree of a vertex in G, respectively.

An arbitrary nonempty finite subset of consecutive integers is called an interval. An interval with the minimum element p and the maximum element q is denoted by $[p, q]$.

A function $\varphi : E(G) \rightarrow [1, t]$ is called a proper edge t-coloring of a graph G, if each of t colors is used, and adjacent edges are colored differently.

The minimum value of t for which there exists a proper edge t-coloring of a graph G, is denoted by $\chi'(G)$ [1].

For any graph G and for any $t \in [\chi'(G), |E(G)|]$ we denote by $\alpha(G, t)$ the set of all proper edge t-colorings of G.

Let us also define a set $\alpha(G)$ of all proper edge colorings of a graph G:

$$\alpha(G) = \bigcup_{t=\chi'(G)}^{\lfloor E(G) \rfloor} \alpha(G, t).$$

* E-mail: nndavtyan@gmail.com
** E-mail: rrkamalian@yahoo.com
If $\varphi \in \alpha(G)$ and $x \in V(G)$, then the set $\{\varphi(e)/e \in E(G), e \text{ is incident with } x\}$ is called a spectrum of the vertex x of the graph G at the proper edge coloring φ and is denoted by $S_G(x, \varphi)$.

If G is a graph, $\varphi \in \alpha(G)$, then set

$$V_{in}(G, \varphi) \equiv \{x \in V(G)/S_G(x, \varphi) \text{ is an interval}\}$$

and

$$f_G(\varphi) \equiv |V_{in}(G, \varphi)|.$$

A proper edge coloring $\varphi \in \alpha(G)$ is called an interval edge coloring \cite{2-4} of the graph G, if and only if $f_G(\varphi) = |V(G)|$. The set of all graphs having an interval edge coloring is denoted by \mathcal{N}. The terms and concepts, which are not defined can be found in \cite{5}.

For a graph G and for any $t \in [\chi'(G), |E(G)|]$, we set \cite{6}:

$$\mu_1(G,t) \equiv \min_{\varphi \in \alpha(G,t)} f_G(\varphi), \quad \mu_2(G,t) \equiv \max_{\varphi \in \alpha(G,t)} f_G(\varphi).$$

For any graph G, we set \cite{6}:

$$\mu_{11}(G) \equiv \min_{\chi'(G) \leq t \leq |E(G)|} \mu_1(G,t), \quad \mu_{12}(G) \equiv \max_{\chi'(G) \leq t \leq |E(G)|} \mu_1(G,t),$$

$$\mu_{21}(G) \equiv \min_{\chi'(G) \leq t \leq |E(G)|} \mu_2(G,t), \quad \mu_{22}(G) \equiv \max_{\chi'(G) \leq t \leq |E(G)|} \mu_2(G,t).$$

Clearly, the μ-parameters are correctly defined for an arbitrary graph. Some remarks on their interpretations in games are given in \cite{7}.

The exact values of the parameters μ_{11}, μ_{12}, μ_{21} and μ_{22} are found for simple paths, simple cycles and simple cycles with a chord \cite{8,9}, “Möbius ladders” \cite{6,10}, complete graphs \cite{11}, complete bipartite graphs \cite{12,13}, prisms \cite{10,14}, n-dimensional cubes \cite{14,15} and the Petersen graph \cite{7}. The exact values of μ_{11} and μ_{22} for trees are found in \cite{16}. The exact value of μ_{12} for an arbitrary tree is found in \cite{17} (see also \cite{18,19}).

In this paper some relations between the μ-parameters of regular graphs are obtained.

The Main Results. In the rest part of this paper we admit an additional condition: an arbitrary graph G satisfies the inequality $\delta(G) \geq 2$.

Theorem 1. \cite{8,9}. For any integer $k \geq 2$ the following equalities hold:

1. $\mu_{12}(C_{2k}) = \mu_{22}(C_{2k}) = 2k$,
2. $\mu_{21}(C_{2k}) = 2k - 1$;
3. $\mu_{11}(C_{2k}) = \left\{\begin{array}{ll} 1, & \text{if } k = 2, \\ 0, & \text{if } k \geq 3. \end{array}\right.$
Theorem 2. For any positive integer k the following equalities hold:

1. $\mu_{12}(C_{2k+1}) = 2$;
2. $\mu_{21}(C_{2k+1}) = \mu_{22}(C_{2k+1}) = 2k$;
3. $\mu_{11}(C_{2k+1}) = \begin{cases} 2, & \text{if } k = 1, \\ 0, & \text{if } k \geq 2. \end{cases}$

Corollary 1. For any integer $k \geq 2$ the inequalities $\mu_{21}(C_2k) < \mu_{12}(C_{2k})$ and $\mu_{22}(C_{2k+1}) < \mu_{21}(C_{2k+1})$ hold.

Theorem 3. For any graph G the inequalities $\mu_{11}(G) \leq \mu_{12}(G) \leq \mu_{22}(G)$, $\mu_{11}(G) \leq \mu_{21}(G) \leq \mu_{22}(G)$ hold.

Corollary 1 means that there are graphs G, for which $\mu_{21}(G) < \mu_{12}(G)$, and there are also graphs G, for which $\mu_{12}(G) < \mu_{21}(G)$.

Theorem 4. If G is a regular graph with $\chi'(G) = \Delta(G)$, then $\mu_{12}(G) = |V(G)|$.

Theorem 5. If G is an r-regular graph and $\varphi \in \alpha(G, |E(G)|)$, then

$$|V_{int}(G, \varphi)| \leq \left\lfloor \frac{r \cdot |V(G)| - 2}{2 \cdot (r-1)} \right\rfloor.$$

Corollary 2. If G is an r-regular graph, then

$$\mu_{2}(G, |E(G)|) \leq \left\lfloor \frac{r \cdot |V(G)| - 2}{2 \cdot (r-1)} \right\rfloor.$$

Corollary 3. If G is an r-regular graph, then

$$\mu_{21}(G) \leq \left\lfloor \frac{r \cdot |V(G)| - 2}{2 \cdot (r-1)} \right\rfloor.$$

Proposition. For arbitrary integers $r \geq 2$ and $n \geq 1$ the inequality

$$\left\lfloor \frac{r \cdot n - 2}{2 \cdot (r-1)} \right\rfloor \leq n - 1$$

holds.

Proof.\[\left\lfloor \frac{rn - 2}{2 \cdot (r-1)} \right\rfloor = \left\lfloor \frac{n - 2}{2 \cdot (r-1)} \right\rfloor \leq \left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{n-2}{2} \right\rfloor = n - 1. \square\]

Corollary 4. If G is a regular graph, then $\mu_{21}(G) \leq |V(G)| - 1$. From Corollary 4 and Theorem 3 we obtain:

Corollary 5. For an arbitrary regular graph G with $\chi'(G) = \Delta(G)$ the inequality $\mu_{21}(G) < \mu_{12}(G)$ holds.

Theorem 6. For an arbitrary regular graph G the following four statements are equivalent:

1. $\chi'(G) = \Delta(G)$,
2. $G \in \mathcal{M}$,
3. $\mu_{22}(G) = |V(G)|$,
4. $\mu_{12}(G) = |V(G)|$.
Proof. The equivalence between 1) and 2) was proved in [2–4]. The equivalence between 2) and 3) is evident.
Let us show the equivalence between 1) and 4).
If $\chi'(G) = \Delta(G)$, then by Theorem 4 we have the equality $\mu_{12}(G) = |V(G)|$. It means that 1) \Rightarrow 4).
Now suppose that $\mu_{12}(G) = |V(G)|$. By Theorem 3 we have also the equality $\mu_{22}(G) = |V(G)|$. Consequently, using the equivalence between 2) and 3), we have also the relation $G \in \mathcal{F}$. Finally, using the equivalence between 1) and 2), we have also the equality $\chi'(G) = \Delta(G)$. Thus, 4) \Rightarrow 1).

Theorem 6 implies that the problem of determined whether $\mu_{12}(G) = |V(G)|$ for a given regular graph G is NP-complete.

Received 22.09.2014

REFERENCES

7. Davtyan N.N. On the μ-Parameters of the Petersen Graph.
http://arxiv.org/abs/1307.2348
Davtyan N. N., Kamalian R. R. Some Relations Between the μ-Parameters ...

12. **Khachatryan A.M.** On the Parameters μ_{11}, μ_{12} and μ_{22} of Complete Bipartite Graphs. // The Herald of the RAU, 2011, № 1, p. 76–83 (in Russian).

20. **Davtyan N.N., Kamalian R.R.** An Inequality for the Number of Vertices with an Interval Spectrum in Edge Labelings of Regular Graphs.