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LOW-MASS QUARK STARS OR QUARK WHITE DWARFS

G. B. Alaverdyan, A. R. Harutyunyan, and Yu. L. Vartanyan UDC: 31.084

An equation of state is considered that, in superdense nuclear matter, results in a phase transition of the first

kind from the nucleon state to the quark state with a transition parameter ( )( ).cPNQ
2

023 +rr=l>l .

A calculation of the integrated parameters of superdense stars on the basis of this equation of state shows that
on the stable branch of the dependence of stellar mass on central pressure (dM/dP

c
 > 0), in the low-mass

range, following the formation of a tooth-shaped break (M = 0.08 M
¤

, R = 200 km) due to quark formation,
a new local maximum with M

max
 = 0.082 M

¤ 
and R = 1251 km is also formed.  The mass and radius of the

quark core of such a star turn out to be M
core

 = 0.005 M
¤ 

 and R
core

 = 1.7 km, respectively.  Mass accretion in
this model can result in two successive transitions to a neutron star with a quark core, with energy release like
supernova outbursts.

1. Introduction

Wittten�s hypothesis that it is possible for strange quark matter to form in superdense nuclear matter [1] has

stimulated numerous papers devoted both to the problem of the transition to such a state and the construction of a realistic

equation of state and to the application of different versions of the equation of state for the study of compact objects

containing strange quark matter [2-11].  It turned out that, depending on the values of the quantum chromodynamic (QCD)

constants occurring in nature, two types of essentially different stellar configurations can exist: so-called strange stars,

consisting entirely of strange quark matter, and hybrid stars, simulatneously containing neutron and strange quark matter.

To study the functional dependence of the structural and integrated parameters of stellar configurations on the form of

the equation of state of superdense matter, we considered an extensive set of realistic equations of state that provide for

the coexistence of neutron matter with strange quark matter.  In the low-mass range (M/M
¤

≈ 0.08) it was found that one

of these equations of state results in the appearance of an additional local maximum on the curve of the dependence of

the star�s mass M on its central pressure P
c
, which makes possible the existence of a new family of stable, equilibrium

stellar configurations with rather interesting distinguishing features.  At the center of such a star there is a quark core,

and the stellar radius can reach some 1000 km, which makes them resemble white dwarfs.

In this work we confine ourselves to a study of hybrid stars when just this equation of state is realized,

concentrating our attention on the low-mass range.  The results of a more detailed comparative analysis of the functional

dependence of stellar properties on the choice of the equation of state in the entire possible range of variation of central

pressure will be published later.
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In considering the phase transition to quark matter, we assumed that an ordinary phase transition of the first kind

occurs, and at some pressure P
0
, corresponding to the coexistence of two phases, the energy density and baryon

concentration undergo discontinuities.  The mixed phase of quark and nuclear matter proposed by Glendenning [8]

presumes, in contrast to the usual phase transition of the first kind, a continuous variation of pressure and density in the

region of the appearance of the quark phase.  If the mixed phase is energetically favorable, then instead of a phase

transition of the first kind there are two phase transitions of the second kind, at the densities of the onset and end of the

mixed phase, respectively.

Heiselberg et al. [9] showed that allowance for the local surface and Coulomb energies, which appear due to the

formation of quark and nuclear structures in the mixed phase, makes it possible for the formation of a mixed phase to

be energetically unfavorable.  Thus, if the surface tension between the quark and nuclear matter is high enough, the

appearance of a mixed phase is energetically unfavorable.  The neutron star will then have a core of pure quark matter

and a crust of nuclear matter.  A phase transition of the first kind occurs in this case and the two phases coexist.

For low and moderate values of the surface tension of quark structures, it becomes possible for a mixed phase

to exist, consisting of quark formations of various configurations in the form of drop-like, rod-like, and plate-like structures

[10].

The uncertainty in the value of the surface tension of strange quark matter at present prevents a definite

determination of which of these versions occurs in reality.  Below we consider the case that presumes a surface tension

that leads to a phase transition of the first kind with the possible coexistence of two phases.

2. Equation of State

The mass density inside a neutron star varies within a fairly wide range from several grams per cubic centimeter

in the periphery (envelope) to 1015 g/cm3 at the center.  At present there is no unified theory that provides an adequate

description of the state of such matter, with allowance for the formation of all possible constituents in the entire density

range.  In constructing an equation of state for the matter of a neutron star, therefore, one usually uses different equations

of state for different density ranges, providing for continuity in the transition from one range to another, of course.

 2.1.  Nucleon Matter (NM).  In the present work we have used the following equations of state for densities below

the normal nuclear density:

7.86 g/cm3 < ρ < 1.15⋅103 g/cm3   (FMT  [12]),

1.15⋅103 g/cm3 < r < 4.3⋅1011 g/cm3   (BPS  [13]).

Starting with the density ρ
nd

 = 4.3⋅1011 g/cm3, the composition of the matter changes due to neutron evaporation

from neuclei, forming the so-called Aen structure, and the state is described by the equation

4.3⋅1011 g/cm3 < r < 2.21⋅1013 g/cm3   (BBP  [14]).

In the supernuclear density range we used the relativistic equation of state of neutron matter tabulated by Weber

et al. [15], which was calculated with allowance for two-particle correlations on the basis of the Bonn meson-exchange

potential [16].  That equation of state is designated as WGW�Bonn,

3.56⋅1013 g/cm3 < ρ < 4.81⋅1014 g/cm3   (WGW�Bonn  [15]).

Note that in joining this equation with the BBP equation of state, the overlapping density range

2.98⋅1013 g/cm3 < ρ < 1.58⋅1014 g/cm3 was discarded from the latter.

These equations of state, which in combination cover the density range of 7.86 g/cm3 < ρ < 4.81⋅1014 g/cm3,

describes the matter of a neutron star with a nucleon structure.
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To investigate the phase transition, we must know the dependence of the baryon chemical potential µ
B
 on pressure

P, i.e., the function ( ) ( ),PNM
Bm  or the dependence of the baryon energy E on the baryon density n: E 

(NM)(n).  For this

purpose, to the tabulated values of P, r, and n we added values of the quantities

( ) ( ) ,
2

2
2

NM

n

cP
c

n

c
nPB

r+
=r-

¶

r¶
=m (1)

( ) ( ) .2 ncnNM r=E (2)

We used Aitken�s interpolation scheme [17] to construct the continuous functions ( ) ( ),PNM
Bm  and E 

(NM)(n).

2.2.  Strange Quark Matter (QM).  We used the quark bag model, developed at the Massachusetts Institute of

Technology (MIT) [18], to describe the quark phase.  The quark phase consists of three quark flavors, u, d, and s, and

electrons in equilibrium with respect to weak interactions, provided by the reactions

.,

,,

ee

ee

seudeu

euseud

n+®+n+®+

n++®n++®
--

--

(3)

These interactions lead to the following relations among the chemical potentials:

.euds m+m=m=m (4)

The condition of electrical neutrality for the quark�electron plasma has the form

.0
3

1

3

1

3

2
=--- esdu nnnn (5)

The number density of particles of the ith kind is defined by the equation

( ) ( ),,,, esduin
i

i
ii =

m¶

W¶
-=m (6)

where Ω
i
 is the thermodynamic potential of particles of the ith kind.  We used the expression for the thermodynamic

potential Ω
i
 given in [2, 4] in a linear approximation with respect to the quark�gluon interaction constant α

c
 = g2/4π,

where g is the QCD binding constant.  In [2, 4] the masses of u and d quarks are taken as zero while the mass of the

strange quark is m
s
 = 175 MeV.

Equations (4)-(6) enable us to express the particle concentrations n
i
 and thermodynamic potentials Ω

i
 as functions

of the chemical potential of one of the quark flavors, of µ
s
 = µ

d
 = µ, let us say.

In the MIT bag model, pressure is defined by the expression

( ) ( ) ,BP
es,d,u,i

i -mW-=m å
=

(7)

where B is the �bag� constant, characterizing the vacuum pressure and providing for confinement.

The following phenomenological parameters of the �bag� model are used in the present work:

m
s
 = 175 MeV,   B = 55 MeV/fm3,   and   α

c
 = 0.5.

The energy density ( ) 2cQMr  of the quark�electron plasma and the baryon concentration ( )QM
Bn  are defined by the

expressions

( ) ( ) ,
,,,

2 Bnc
esdui

iii
QM +m+W=r å

=
(8)
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( ) ( ).
3

1
sdu

QM
B nnnn ++= (9)

The baryon chemical potential ( )QM
Bm

 and the energy E (QM) per baryon for strange quark matter are defined just

as in the case of neutron matter:

( )
( )

( )
,

2

QM
B

QM
QM

B
n

cP r+
=m (10)

( ) ( ) ( ) .2 QM
B

QMQM ncr=E (11)

2.3.  Phase Transition of the First Kind.  A phase transition of the first kind occurs in the model that we are

considering.  The Gibbs conditions

( ) ( )

( ) ( )QM
B

NM
B

QMNM PPP

m=m

== ,0
(12)

enable us to find the pressure P
0
, the baryon number densities n

N
 and n

Q
, and the mass densities ρ

N
 and ρ

Q
 characterizing

the two coexisting phases.

The parameters of a phase transition of the first kind can also be determined from the standard Maxwellian

construct.  The functional dependence of the energy per baryon in a phase transition of the first kind satisfies the

analogous Gibbs conditions through the equations

Fig. 1.  Maxwellian construct for a phase transition of
neutron matter (NM) to strange quark matter (QM). E  is
the energy per baryon and n is the baryon density.

QM

NM

1/n, fm3

E,
 M

eV

1/n
N

1/n
Q



269

( )

( )( )
( )

( )( )
,

11
0P

nn QM
B

QM

NM
B

NM

-=
¶

¶
=

¶

¶ EE
(13)

,
11

0 ÷
÷
ø

ö
ç
ç
è

æ
-=-

QN
NQ nn

PEE (14)

which corresponds to the common tangent to the graph of the energy E  per baryon as a function of 1/n.  The Maxwellian

construct enabling one to determine the parameters P
0
, n

N
, and n

Q
 is given in Fig. 1.

Numerical calculations within the framework of this model led to the following values of the characteristics of

a phase transition of the first kind: P
0
 = 0.76 MeV/fm3, n

N
 = 0.12 fm�3, n

Q
 = 0.26 fm-3, ρ

N
c2 = 113.8 MeV/fm3,

ρ
Q
c2 = 250.5 MeV/fm3.

3. Models of Neutron Stars with a Core of Strange Quark Matter (Hybrid Stars)

3.1.  TOV and Hartle Equations.  The space-time geometry for spherically symmetric, static stars is given by the

metric

( ) ( ) ( ).sin 22222222 jJ+J--= ln ddrdredtceds rr (15)

The structure function eλ(r) is defined by the equation

( ) ( ) ( )( ) ,21
12 -l -= rcrGme r

where m(r) is the mass accumulated inside a sphere of radius r.  The metric function ν(r) outside the star satisfies the

condition

( ) ( ) .,21 2 RrrcGMe r >-=n (16)

The Einstein equations for a static star lead to the well-known Tolman-Oppenheimer-Volkoff (TOV) equations [19-22]

( )
( ) ( )( )

( ),4
21

23
22

2

cPrm
rcrGmr

cPG

dr

dP
p+

-

+r
-= (17)

,4 2 rp= r
dr

dm
(18)

( ) ( )
,

21

4
2

0
2

0

rcrGm

r

dr

dm

-

rp
= (19)

( ) ( )
,

21

4
2

2

rcrGm

r

dr

dmp

-

rp
= (20)

( )
( ) ( )( )

.
21

42
222

23

rcrGmrc

cPrmG

dr

d *

-

p+
=

n
(21)

Here m and m
p
 are the gravitational and proper masses, respectively, while m

0
 is the rest mass within a sphere of
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radius r, 
( )

n
FeM

56

56

0 =r  is the rest-mass density, and n is the baryon number density.

It is convenient to replace the equation for the moment of momentum, which is a second-order differential equation

[23], by a system of two first-order equations*  [24],

( )

( ) ( )
,

21

6
242

2

rcrGmrc

erGl

dr

d
**

-
=

w n

(22)

( ) ( )
( ) ( )

.
213

8
2

224

rcrGm

ecPrr

dr

dl
**

-

+rpw
=

n-

(23)

Integration begins from the center of the star with the boundary conditions P = P
c
, m(0) = 0, m

0
(0) = 0, m

p
(0) = 0, ν*(0) = 0,

ω*(0) = ω
0
, and l(0) = 0, where ω

0
 is an arbitrary constant.

The boundary of the equilibrium configuration is determined by the condition P(R) = 0, where R is the star�s

coordinate radius.  The total gravitational mass M, total rest mass M
0
, and total proper mass M

p
 are defined to be

M = m(R), M
0
 = m

0
(R), and M

p
 = m

p
(R).

The structure function ν(r) is defined by the expression

( ) ( ) ( ) ( ) ( )( ).21ln 2rcrGmRrr ** -+n-n=n (24)

The functions ω*(r) and l(r) enable one to determine the star�s moment of inertia:

( )

( ) ( ) ( ) ( )
.

2
21

32
22

Rc

RGl
eRcGMR

Rl
I

R* *

+-w
=

n- (25)

The integrated parameters of a superdense star are determined by numerical integration of the system of equations (17)-

(23) for a given equation of state ρ(P) and ρ
0
(P).

3.2.  Results of Numerical Integration.  We integrated the TOV and Hartle equations, using the equation of state

of superdense matter described above, with allowance for the possible appearance of strange quark matter as a result of

a phase transition of the first kind.

The results of a calculation of the total mass M, rest mass M
0
, and proper mass M

p
 as functions of central pressure

P
c
 are given in Fig. 2.  Whereas in the range of maximum mass (configuration f) these curves have the usual character,

in the low-mass range, where stability loss again occurs � the condition dM/dP
c
 > 0 (configuration a) is violated � the

curve has a number of peculiarities that are absent in the case of other equations of state.  This range is given on an

enlarged scale in the upper left corner of the figure.  Immediately after configuration a there is a tooth-shaped break on

the curve (configuration b), due to quark formation.  The section ab corresponds to stable neutron stars with no quark

core.  Configurations with small quark cores are unstable (the section bc of the curve, where we have dM/dP
c
 < 0).  This

agrees with the results of Kaempfer [25], who showed that if the condition

23
2

0

/
/cPN

Q >
+r

r
=l (26)

is satisfied, configurations with a low-mass core of a new phase are unstable.  In the case under consideration, we have

λ = 2.19, i.e., l is in accord with the condition (26).

* A factor of 6 was omitted from Eq. (22) in [24].
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Fig. 2.  Total mass M, rest mass M
0
, and proper mass M

p
 as functions of

central pressure.  The behavior of M(P
c
) in the low-mass range is shown on

an enlarged scale in the upper left-hand corner.  Critical configurations are
denoted by the symbols a, b, c, d, e, and f; a corresponds to an ordinary
neutron star with the minimum mass and b to the threshold for the formation
of a quark core.
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    R
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 rations      MeV/fm3                      M
¤

⋅km2           km

a 0.74 0.0798 254.7 0.00573 9.99 0 0

b 0.76 0.080 205 0.00597 6.6 0 0

c 0.94 0.079 380 0.00576 25.4 0.001 1.0

d 1.3 0.082 1251 0.00622 861.4 0.005 1.73

e 1.97 0.072 133.2 0.00596 2.4 0.016 2.59

f 321 1.86 10.8 0.15495 94.1 1.85 10.26

TABLE 1.  Parameters of Critical Configurations

Usually, when the condition (26) is satisfied, the tooth-shaped break abc occurs not in the low-mass range but

on the ascending branch of the M(P
c
) curve, and the curve has a monotonically ascending character after configuration

c up to the maximum-mass configuration f.  But in the case under consideration, immediately after this break, again in

the low-mass range, a local maximum is formed, configuration d, the radius of which exceeds 1000 km, while its mass,

although slight, exceeds the mass of configuration b and is 0.082 M
¤

.  Along with the radius of the identified maximum

for this configuration, there is also a moment of inertia (see Table 1 and Fig. 6).

In Table 1 we give the main parameters of the critical configurations a, b, c, d, e, and f.  There we also give the

packing factor a.  As we see, this quantity has a positive sign for all the critical configurations and, except for configuration

f, has the same order of magnitude as for white dwarfs.
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The mass density r as a function of the r coordinate for configuration d is given in Fig. 3.  The dashed line shows

the boundary of the strange quark core and the dotted line corresponds to the threshold for neutron evaporation from

nuclei (the limit of the Aen plasma).  There is a density jump at the boundary of the quark core (ρ
Q
c2 = 250.5 MeV/fm3,

ρ
N
c2 = 113.8 MeV/fm3).

As follows from the calculations, the threshold for the formation of an Aen plasma corresponds to a radial

coordinate R
nd

 = 13.24 km and an accumulated mass M
nd

 = 0.07 M
¤

.  Note that this configuration is similar in size to

a white dwarf, but most of its mass is concentrated in the Aen plasma.

The dependence of a star�s mass M on its radius R is shown in Fig. 4.  The symbols a, b, c, d, e, and f denote

the same configurations as in Fig. 2.  It is seen from Fig. 4 that stars of the same mass that correspond to the two branches

Ae

R
nd

 = 13.24kmR
core

 = 1.73km

ρ
nd

 = 4.3⋅1011g/cm3

Fig. 3.  Mass density r as a function of the radial coordinate r for
configuration d (see Fig. 2 and Table 1).  The dashed line corresponds
to the boundary of the strange quark core and the dotted line
corresponds to the threshold for the formation of an Aen plasma at
the density ρ

nd
 = 4.3⋅1011 g/cm3.

Q
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r, km

ρ,
 g

/c
m

3

Fig. 4.  Dependence of a star�s mass M on its radius R.  The behavior
of M(R) in the low-mass range is shown on an enlarged scale in
the upper right-hand corner.  a, b, c, d, e, and f: same configurations
as in Fig. 2.
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cd and ef differ fairly strongly from one another in radius.  Whereas stars on the ef branch have radii of ~10 km, stars

on the cd branch have fairly large radii of some 1000 km, typical of white dwarfs.

In Fig. 5 we show the stellar radius R and the radius R
core

 of the quark core as functions of the central pressure

P
c
.  The curve corresponding to neutron stars having no quark core is shown by a dotted line.  The radius of the quark

core as a function of the central pressure is shown by a dashed line.  The dash�dot line shows the distance from the star�s

center to the threshold point where an Aen plasma is formed at a density ρ
nd

 = 4.3⋅1011 g/cm3 as a result of neutron

evaporation from nuclei.  It is seen that a clearly defined maximum is observed in the region of configuration d.

A graph of the relativistic moment of inertia I as a function of P
c
 is given in Fig. 6.

It must be noted that if the equation of state under consideration is realized, mass accretion onto a neutron star

will result in two successive discontinuous transitions to a neutron star with a quark core, as a result of which two

successive processes of energy release will occur.  A star with a quark core, belonging to the cd branch, is formed first;

further accretion results in configurations with a radius on the order of 1000 km, and finally, as a result of a second

catastrophic reorganization, a star on the ef branch is formed, having a radius of some 100 km.

We note in conclusion that to clarify the regularity of our result and that it is no accident that an additional

maximum (although a barely distinguishable one) appears on the M(P
c
) curve, we considered several trial equations of

state of neutron matter that differ from the analyzed equation in the region near the threshold for formation of the quark

phase.  The investigations confirmed the regularity of the result and showed that varying the equation of state in the range

of 9⋅1013 g/cm3 < ρ < 1.8⋅1014 g/cm3 can even result in enhancement of the detected feature on the M(P
c
) curve in some

cases.

Fig. 5.  Stellar radius R as a function of central pressure
P

c
.  The dotted line corresponds to ordinary neutron

stars having no quark core.  The dashed line shows the
dependence of the radius R

core
 of the quark core on

P
c
 while the dash�dot line shows the dependence of

the coordinate R
nd

 corresponding to the threshold for
the formation of an Aen plasma.Aen-ïëàçìû.
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4. Conclusion

A phase transition of the first kind in superdense nuclear matter, from the nucleon component to the strange quark

state, with a transition parameter λ > 3/2 usually results in the appearance of a small tooth-shaped break on the stable

branch of the dependence of stellar mass on central pressure [the M(P
c
) curve].  In the model considered above, in which

stability loss in the low-mass range (violation of the condition dM/dP
c
 > 0) occurs at relatively higher densities than in

other models (ρ
c
 = 2⋅1014 g/cm3, Table 1, configuration a) and is next to the threshold for quark creation

(ρ
c
 = 4.5⋅1014 g/cm3, Table 1, configuration b), a new local maximum arises, resulting in the possible existence of low-

mass, superdense stars with a radius exceeding 1000 km and having a 1-km quark core in which only 6% of the entire

stellar mass is concentrated.  Such stars are similar in size to white dwarfs, while most of their mass is concentrated in

the Aen phase.

This work was carried out under theme N2000-55, supported by the Ministry of Education and Science of the

Republic of Armenia.
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