INTERASSOCIATIVITY VIA HYPERIDENTITIES

Yu. Movsisyan, G. Kirakosyan

Yerevan State University, Armenia E-mail: movsisyan@ysu.am, grigor.kirakosyan@ysumail.am

We study interassociativity of semigroups through the following hyperidentities of associativity ([1]-[3]):

$$X(Y(x,y),z) = Y(x,X(y,z)), (ass)_1$$

$$X(Y(x,y),z) = X(x,Y(y,z)), (ass)_2$$

$$X(X(x,y),z) = Y(x,Y(y,z)). (ass)3$$

Moreover, in the q-algebras or e-algebras from $(ass)_3$ it follows $(ass)_2$ and from $(ass)_2$ it follows $(ass)_1$.

Definition. The semigroup $(S; \circ)$ is called $\{i, j\}$ -interassociative to the semigroup $(S; \cdot)$ if algebra $S(\circ, \cdot)$ satisfies the hyperidentities $(ass)_i$ and $(ass)_j$, where i, j = 1, 2, 3. If i = j the semigroup $(S; \circ)$ is called $\{i\}$ -interassociative to $(S; \cdot)$.

We denote by $\operatorname{Int}_{\{i,j\}}(S;\cdot)$ the set of semigroups which are $\{i,j\}$ -interassociative to semigroup $(S;\cdot)$. If i=j the set $\operatorname{Int}_{\{i,j\}}(S;\cdot)$ is denoted by $\operatorname{Int}_{\{i\}}(S;\cdot)$.

Let $(\mathcal{F}(X);\cdot)$ be free semigroup generated by the set X, and $(\mathcal{F}C(X);\cdot)$ be the free commutative semigroup generated by the set X.

Theorem 1. $Int_{\{1,2\}}(\mathcal{F}(X);\cdot) = Int_{\{2\}}(\mathcal{F}(X);\cdot) = \{(\mathcal{F}(X);\cdot)\}, where |X| \ge 3.$

Theorem 2. $Int_{\{3\}}(\mathcal{F}(X);\cdot) = \{(\mathcal{F}(X);\cdot)\}.$

Theorem 3. $Int_{\{3\}}(\mathcal{F}C(X);\cdot) = \{(\mathcal{F}C(X);\cdot)\}.$

Theorem 4. Int_{2}($\mathcal{F}C(X)$; ·) = {($\mathcal{F}C(X)$; * $_x$) | $x \in \mathcal{F}C(X)$ } \cup ($\mathcal{F}C(X)$; ·), where $|X| \ge 4$, $a *_x b = axb$, $a, b \in \mathcal{F}C(X)$.

Theorem 5. If |X| = 1 and $X = \{a\}$, then $Int_{\{1\}}(\mathcal{F}(X); \cdot) = Int_{\{2\}}(\mathcal{F}(X); \cdot) = \{(\mathcal{F}(X); \cdot)\} \cup \{(\mathcal{F}(X); *_x) \mid x \in \mathcal{F}(X)\} \cup \{(\mathcal{F}(X); \circ)\}$, where $a^m \circ a^n = a^{m+n-1}$, $m, n \in \mathbb{N}$.

Using the result of [5] we prove the Theorem 1 for |X|=2 streightforwardly. In [4] is characterized $\operatorname{Int}_{\{1\}}(\mathcal{F}C(X);\cdot)$ and $\operatorname{Int}_{\{1,2\}}(\mathcal{F}C(X);\cdot)$. In [5] is considered $\operatorname{Int}_{\{1\}}(\mathcal{F}(X);\cdot)$.

References

- [1] Movsisyan Yu. M., Introduction to the theory of algebras with hyperidentities, Yerevan State University Press, Yerevan, 1986.
- [2] Movsisyan Yu. M., *Hyperidentities and hypervarieties in algebras*, Yerevan State University Press, Yerevan, 1990.
- [3] Movsisyan Yu. M., Hyperidentities in algebras and varieties, Uspekhi Mat. Nauk, 53 (319):1, 1998, 61–114. Russian Math. Surveys, 53 (1), 1998, 57–108.
- [4] Gorbatkov A. B., Interassociativity on a free commutative semigroup, Sib. Math. J., **54** (3), 2013, 441–445.
- [5] Gorbatkov A. B., Interassociativity of a free semigroup on two generators, Mat. Stud., 41, 2014, 139–145.