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ABSTRACT
In this paper we characterize the variety of Belousov
quasigroups by bigroups and finite fields.
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The quasigroup Q(◦) is called a Belousov quasigroup,if
the identities

x ◦ (x ◦ y) = y ◦ x,

(x ◦ y) ◦ y = x,

x ◦ (y ◦ x) = (y ◦ x) ◦ y

are valid. A non-trivial Belousov quasigroup is not a
Stein quasigroup and not commutative ([?, ?]).

The set O
(2)
p Q of all binary operations on the set Q is a

monoid under the following operations ([3, 4, 5]):

f · g(x, y) = f(x, g(x, y)), (1)

f ◦ g(x, y) = f(g(x, y), y). (2)

Theorem 1. If Q(A) is a non-trivial Belousov quasi-
group, then it is idempotent and A · A = A∗, A · A∗ =
A ◦ A∗, A ◦ A = δ1

2, A∗ · A∗ = δ2
2 , A∗ ◦ A∗ = A . So if

Q(A) is a non-trivial Belousov quasigroup, then the set
{δ1

2 , δ2
2 , A, A∗, A · A∗ = A ◦ A∗} is a bigroup of opera-

tions (on the set Q), where A∗(x, y) = A(y, x) for every
x, y ∈ Q.

Theorem 2. In every Belousov quasigroup Q(◦) the
identities (x ◦ y) ◦ (y ◦ x) = y, (x ◦ y) ◦ (x ◦ (y ◦ x)) =
y◦x, (y◦x)◦(x◦(y◦x)) = x◦y are valid. In a non-trivial
Belousov quasigroup Q(◦), for any a 6= b in Q the set
{a, b, a◦b, b◦a, a◦(b◦a)} is a five-element subquasigroup,
which is isomorphic to the five-element quasigroup with
the following multiplication table:

0 1 2 3 4
0 0 2 4 1 3
1 4 1 3 0 2
2 3 0 2 4 1
3 2 4 1 3 0
4 1 3 0 2 4
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If we take such subquasigroups as blocks, we obtain a
block design on the set Q.

Theorem 3. If Q(◦) is a non trivial Belousov quasi-
group, then for every u, v ∈ Q, u 6= v there exists a five-
element field Hu,v(+, ·), Hu,v ⊆ Q such that u, v ∈ Hu,v

and for every x, y ∈ Hu,v:

x ◦ y = (y − x)a + x, a ∈ Hu,v.

It follows from the last Theorem 3 (or Theorem 2) that
the non-trivial Belousov quasigroup has at least five el-
ements. The variety of Belousov quasigroups is called
a Belousov variety, which is a subvariety of the Mikado
variety ([1]). Hence, the Belousov variety has a solvable
word problem and is congruence-permutable. Every Be-
lousov quasigroup of prime order is a simple algebra.

The applications of similar quasigroups in cellular au-
tomata see in [2].

To solution of the following problem is open.

To which loops are Belousov quasigroups isotopic?
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