On Belousov Quasigroups *

Yu. M. Movsisyan

Yerevan State University, Armenia e-mail: movsisyan@ysu.am

ABSTRACT

In this paper we characterize the variety of Belousov quasigroups by bigroups and finite fields.

Keywords

Quasigroup, bigroup, finite field, Mikado variety, word problem, simple algebra, cellular automaton.

The quasigroup $Q(\circ)$ is called a Belousov quasigroup, if the identities

$$\begin{aligned} x \circ (x \circ y) &= y \circ x, \\ (x \circ y) \circ y &= x, \\ x \circ (y \circ x) &= (y \circ x) \circ \end{aligned}$$

are valid. A non-trivial Belousov quasigroup is not a Stein quasigroup and not commutative ([?, ?]).

The set $O_p^{(2)}Q$ of all binary operations on the set Q is a monoid under the following operations ([3, 4, 5]):

$$f \cdot g(x, y) = f(x, g(x, y)), \tag{1}$$

 \boldsymbol{u}

$$f \circ g(x, y) = f(g(x, y), y).$$
 (2)

Theorem 1. If Q(A) is a non-trivial Belousov quasigroup, then it is idempotent and $A \cdot A = A^*$, $A \cdot A^* = A \circ A^*$, $A \circ A = \delta_2^1$, $A^* \cdot A^* = \delta_2^2$, $A^* \circ A^* = A$. So if Q(A) is a non-trivial Belousov quasigroup, then the set $\{\delta_2^1, \delta_2^2, A, A^*, A \cdot A^* = A \circ A^*\}$ is a bigroup of operations (on the set Q), where $A^*(x, y) = A(y, x)$ for every $x, y \in Q$.

Theorem 2. In every Belousov quasigroup $Q(\circ)$ the identities $(x \circ y) \circ (y \circ x) = y, (x \circ y) \circ (x \circ (y \circ x)) =$ $y \circ x, (y \circ x) \circ (x \circ (y \circ x)) = x \circ y$ are valid. In a non-trivial Belousov quasigroup $Q(\circ)$, for any $a \neq b$ in Q the set $\{a, b, a \circ b, b \circ a, a \circ (b \circ a)\}$ is a five-element subquasigroup, which is isomorphic to the five-element quasigroup with the following multiplication table:

	0	1	$\mathcal{2}$	\mathcal{Z}	4
0	0	2	4	1	3
1	4	1	\mathcal{B}	0	$\mathcal{2}$
\mathcal{Z}	\mathcal{B}	0	$\mathcal{2}$	4	1
3	\mathcal{Z}	4	1	\mathcal{B}	0
4	1	\mathcal{B}	0	\mathcal{Z}	4

^{*}On Belousov Quasigroups

If we take such subquasigroups as blocks, we obtain a block design on the set Q.

Theorem 3. If $Q(\circ)$ is a non trivial Belousov quasigroup, then for every $u, v \in Q, u \neq v$ there exists a fiveelement field $H_{u,v}(+, \cdot), H_{u,v} \subseteq Q$ such that $u, v \in H_{u,v}$ and for every $x, y \in H_{u,v}$:

$$x \circ y = (y - x)a + x, a \in H_{u,v}$$

It follows from the last Theorem 3 (or Theorem 2) that the non-trivial Belousov quasigroup has at least five elements. The variety of Belousov quasigroups is called a Belousov variety, which is a subvariety of the Mikado variety ([1]). Hence, the Belousov variety has a solvable word problem and is congruence-permutable. Every Belousov quasigroup of prime order is a simple algebra.

The applications of similar quasigroups in cellular automata see in [2].

To solution of the following problem is open.

To which loops are Belousov quasigroups isotopic?

Acknowledgement

This research is supported by the State Committee of Science of the Republic of Armenia, grants: 10-3/1-41 and 15T-1A258.

REFERENCES

- B. Ganter, H. Werner, "Equational classes of Steiner systems", *Algebra Universalis*, 5, pp. 125-140, 1975.
- [2] C. Moor, "Quasi-Linear Cellular Automata", Physica, Proceedings of the International Workshop on Lattice Dynamics, D103, pp. 100-132, 1997.
- [3] Yu. M. Movsisyan, "Hyperidentities and hypervarieties in algebras", Yerevan State University Press, Yerevan, 1990 (in Russian).
- [4] Yu. M. Movsisyan, "Hyperidentities in algebras and varieties", *Russian Math. Surveys*, 53(1), pp. 57-108, 1998.
- [5] Yu. M. Movsisyan, "Binary representation of algebras with at most two binary operations. A Cayley theorem for distributive lattices", Internat. J. Algebra Comput., 19(1), pp.97-106, 2009.