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Abstract The electromagnetic field correlators are eval-
uated around a cosmic string in background of (D + 1)-
dimensional dS spacetime assuming that the field is pre-
pared in the Bunch–Davies vacuum state. The correlators are
presented in the decomposed form where the string-induced
topological parts are explicitly extracted. With this decompo-
sition, the renormalization of the local vacuum expectation
values (VEVs) in the coincidence limit is reduced to the one
for dS spacetime in the absence of the cosmic string. The
VEVs of the squared electric and magnetic fields, and of the
vacuum energy density are investigated. Near the string they
are dominated by the topological contributions and the effects
induced by the background gravitational field are small. In
this region, the leading terms in the topological contributions
are obtained from the corresponding VEVs for a string on the
Minkowski bulk multiplying by the conformal factor. At dis-
tances from the string larger than the curvature radius of the
background geometry, the pure dS parts in the VEVs domi-
nate. In this region, for spatial dimensions D > 3, the influ-
ence of the gravitational field on the topological contributions
is crucial and the corresponding behavior is essentially dif-
ferent from that for a cosmic string on the Minkowski bulk.
There are well-motivated inflationary models which pro-
duce cosmic strings. We argue that, as a consequence of the
quantum-to-classical transition of super-Hubble electromag-
netic fluctuations during inflation, in the post-inflationary
era these strings will be surrounded by large-scale stochastic
magnetic fields. These fields could be among the distinctive
features of the cosmic strings produced during the inflation
and also of the corresponding inflationary models.

1 Introduction

The properties of the quantum vacuum are sensitive to both
the local and the global geometrical characteristics of the

a e-mail: saharian@ysu.am

background spacetime. In this paper we investigate the elec-
tromagnetic vacuum polarization sourced by the gravita-
tional field and by the nontrivial topology due to the presence
of a straight cosmic string. In order to have an exactly solv-
able problem, as the background geometry we will consider
a spacetime that is maximally symmetric in the absence of
the cosmic string, namely de Sitter (dS) spacetime. For the
cosmic string a simplified model will be taken in which the
local geometry outside the core is not changed by the pres-
ence of the string: the only effect is the planar angle deficit
depending on the mass density of the string.

In addition to the high degree of symmetry, our choice of
dS spacetime as the background geometry is motivated by its
importance in modern cosmology. In most inflationary mod-
els the early expansion of the universe is approximated by the
dS phase (for reviews see [1–4]). The presence of this phase
before the radiation dominated era naturally solves several
problems in the standard cosmological model. More recently,
the astronomical observations of high redshift supernovae,
galaxy clusters, and cosmic microwave background [5–11]
indicate that at the present epoch the universe is accelerating
and the corresponding expansion is dominated by a source
of the cosmological constant type. In this case, the dS space-
time appears as the future attractor for the geometry of the
universe. Consequently, the investigation of physical effects
in dS spacetime is important for understanding both the early
universe and its future evolution. A topic which has received
increasing attention is related to string-theoretical models of
dS spacetime and inflation. Recently several constructions of
metastable dS vacua within the framework of string theory
are discussed (see, for instance, reviews [12,13]).

The investigation of the quantum field theoretical effects
in dS spacetime is of considerable interest. These effects
may have important implications in cosmology. During an
inflationary epoch, quantum fluctuations in the inflaton field
introduce inhomogeneities which play a central role in the
generation of cosmic structures from inflation. The inflation
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also provides an attractive mechanism of producing long-
wavelength electromagnetic fluctuations, originating from
subhorizon-sized quantum fluctuations of the electromag-
netic field stretched by the dS phase to superhorizon scales.
After these long-wavelength fluctuations have re-entered the
horizon in the post-inflationary era, they can serve as seeds
for cosmological magnetic fields. Related to this inflationary
mechanism for the generation of the seeds, the cosmological
dynamics of the electromagnetic field quantum fluctuations
have been discussed in a large number of papers (for reviews
see [14–17]).

In the present paper we investigate the influence of a cos-
mic string on the vacuum fluctuations of the electromagnetic
field in background of dS spacetime (for the effects of infla-
tion on the cosmic strings see, for instance, [18–21]). Though
the cosmic strings produced in phase transitions before or
during early stages of inflation are diluted by the expansion
to at most one per Hubble radius, the formation of defects near
or at the end of inflation can be triggered by several mecha-
nisms (see [22,23] for possible distinctive signals from such
models). They include a coupling of the symmetry breaking
field to the inflaton field or to the curvature of the back-
ground spacetime. Moreover, one can have various inflation-
ary stages, with linear defects being formed in between them
[24]. Depending on the underlying microscopic model, there
exist several kinds of cosmic strings. They can be either non-
trivial field configurations or more fundamental objects in
superstring theories. The cosmic strings are among the most
popular topological defects formed by the symmetry break-
ing phase transitions in the early universe within the frame-
work of the Kibble mechanism [25]. They are sources of a
number of interesting physical effects that include the gen-
eration of gravitational waves, high-energy cosmic rays, and
gamma ray bursts. Among the other signatures are the gravi-
tational lensing and the creation of small non-Gaussianities in
the cosmic microwave background. The cosmic superstrings,
which are fundamental quantum strings stretched to cosmo-
logical scales, were first considered in [26]. More recently, a
mechanism for the generation of this type of objects with low
values of the string tensions is proposed within the frame-
work of brane inflationary models [13,22,23,27]. In these
models the accelerated expansion of the universe is a conse-
quence of the motion of branes in warped and compact extra
dimensions.

Although the specific properties of cosmic strings are
model-dependent, they produce similar gravitational effects.
In the simplified model with the string-induced planar angle
deficit, the nontrivial spatial topology results in the distor-
tion of the vacuum fluctuations spectrum of quantized fields
and induces shifts in vacuum expectation values (VEVs) of
physical characteristics of the vacuum state such as the field
squared and the energy-momentum tensor. Explicit calcula-
tions of this effect have been done for scalar, fermion and

vector fields (see references given in [28,29]). For charged
fields, another important characteristic of the vacuum state is
the VEV of the current density (see [30,31] for a recent dis-
cussion and references therein). The analysis of the vacuum
polarization effects induced by a cosmic string in dS space-
time for massive scalar and fermionic fields has been pre-
sented in [32–34]. Here we will be concerned with the com-
bined effects of the background gravitational field and of a
cosmic string on the correlators for the electric and magnetic
fields and on the VEVs of the energy density and squared
electric and magnetic fields. The problem will be consid-
ered on the bulk of dS spacetime with an arbitrary number
of spatial dimensions D. This is motivated by several rea-
sons. In discussions of cosmic superstrings, depending on the
compactification scheme of extra dimensions, one can have
3 � D � 9. In particular, this is the case for superstrings
formed at the end of brane inflation. The consideration of
electrodynamics in spatial dimensions D > 3 is a natural
way to break the conformal invariance of the D = 3 theory.
The breaking of conformal invariance is required in infla-
tionary models for the generation of large-scale magnetic
fields. Usually this is done by adding additional couplings
of the electromagnetic field (for example, to the inflaton
field) [14–17]. A mechanism for the generation of cosmo-
logical magnetic fields, based on the dynamics of electro-
magnetic fluctuations in models with D > 3, has been dis-
cussed in [35]. The consideration of quantum field theories in
a number of spatial dimensions other than 3 is also required
in dimensional regularization procedure for the ultraviolet
divergences.

The paper is organized as follows. In the next section
the background geometry is described and a complete set
of mode functions for the electromagnetic field is given.
In Sect. 3, two-point functions for the vector potential and
for the electric field strength are investigated. The VEV of
the electric field squared is discussed in Sect. 4. The part
induced by the nontrivial topology of the cosmic string is
explicitly separated and its asymptotic behavior in various
limiting regions is investigated. The two-point functions cor-
responding to the Lagrangian density and the magnetic field
are considered in Sect. 5. The topological contributions in
the VEVs of the squared magnetic field and of the vacuum
energy density are investigated. The main results are summa-
rized in Sect. 6. In the appendix we present the main steps for
the evaluation of the integrals appearing in the expressions
for the two-point functions.

2 Cylindrical electromagnetic modes

We consider (D + 1)-dimensional locally dS background
geometry described in cylindrical spatial coordinates (r, φ, z),
z = (z3, . . . , zD), by the interval
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ds2 = (α/τ)2[dτ 2 − dr2 − r2dφ2 − (dz)2], (2.1)

with the conformal time coordinate τ , −∞ < τ < 0.
The corresponding synchronous time t is expressed as t =
−α ln(|τ | /α), −∞ < t < +∞. For the remaining coor-
dinates we assume that 0 � r < ∞, 0 � φ � φ0,
−∞ < zl < +∞, l = 3, . . . , D. For φ0 = 2π the geometry
is reduced to the standard dS one given in inflationary coor-
dinates. In the case φ0 < 2π , though the local geometrical
characteristics for r �= 0 remain the same, the global prop-
erties are different. The special case D = 3 corresponds to
a straight cosmic string with the core along the axis z3 and
with the planar angle deficit 2π− φ0 determined by the linear
mass density of the string. In [36,37] it has been shown that
the vortex solution of the Einstein–Abelian–Higgs equations
in the presence of a cosmological constant induces a deficit
angle into dS spacetime. The cosmological constant � is
expressed in terms of the parameter α in the line element
(2.1) by the relation � = D(D − 1)/(2α2).

The presence of the angle deficit gives rise to a num-
ber of interesting topological effect in quantum field the-
ory. Here we are interested in the influence of the cosmic
string on the vacuum fluctuations of the electromagnetic
field. The properties of these fluctuations are encoded in
the two-point functions which describe the correlations of
the fluctuations at different spacetime points. These correla-
tors are VEVs of bilinear combinations of the vector poten-
tial operator Aμ(x), where x = (τ, r, φ, z) stands for the
spacetime point. By expanding this operator in terms of
a complete set {A(β)μ, A∗

(β)μ} of solutions to the classical
Maxwell equations and by using the definition of the vac-
uum state |0〉, we can see that for a given bilinear combina-
tion f (Aμ(x), Aν(x ′)) the corresponding VEV is presented
in the form of the mode sum

〈0| f (Aμ(x), Aν(x
′))|0〉 =

∑

β

f (A(β)μ(x), A∗
(β)ν(x

′)).

(2.2)

Here, the set of quantum numbers β specifies the electro-
magnetic mode functions and in the right-hand side

∑
β is

understood as a summation over discrete quantum numbers
and an integration over continuous ones. Hence, as the first
stage, we need to find the complete set of cylindrical elec-
tromagnetic modes on dS bulk in the presence of the cosmic
string.

It is convenient to fix the gauge degrees of the freedom
by the Coulomb gauge with A0 = 0 and ∂l(

√|g|Al) = 0 for
l = 1, . . . , D. For the metric tensor

gμν = (
α/τ

)2diag(1,−1,−r2,−1, . . . ,−1), (2.3)

the latter equation is reduced to ∂l(r Al) = 0 and coin-
cides with the corresponding equation in the Minkowski
bulk. The procedure to find the complete set of solutions

to the Maxwell equations is similar to that we have already
described in [38] for the bulk in the absence of the cosmic
string. The only difference is in the periodicity condition
along the azimuthal direction φ. The corresponding part in
the mode functions is given by eiqmφ with q = 2π/φ0 and
m = 0,±1,±2, . . . . This leads to the dependence of the
mode functions on the radial coordinate in terms of the Bessel
function Jq|m|(γ r) with 0 � γ < ∞. The time dependence
appears in the form of the linear combination of the func-
tions ηD/2−1H (1)

D/2−1(ωη) and ηD/2−1H (2)
D/2−1(ωη), where

η = |τ | = αe−t/α and H (l)
ν (y), l = 1, 2, are the Hankel

functions. The relative coefficient in the linear combination
depends on the choice of the vacuum state under consider-
ation. Here we assume that the field is prepared in the state
that is the analog of the Bunch–Davies vacuum state for a
scalar field [39]. For this state the coefficient of the function
H (2)
D/2−1(ωη) is zero.
In (D + 1)-dimensional spacetime, the electromagnetic

field has D−1 polarization states. In what follows we specify
them by the quantum number σ = 1, . . . , D − 1. For the
polarization σ = 1 the cylindrical electromagnetic modes
corresponding to the Bunch–Davies vacuum are presented
as

A(β)μ(x) = cβηD/2−1H (1)
D/2−1(ωη)

×
(

0,
iqm

r
,−r∂r , 0, . . . , 0

)
Jq|m|(γ r)eiqmφ+ik·z,

(2.4)

and for the polarizations σ = 2, . . . , D − 1 we get

A(β)μ(x) = cβωηD/2−1H (1)
D/2−1(ωη)

×
(

0, εσ l + i
k · εσ

ω2 ∂l

)
Jq|m|(γ r)eiqmφ+ik·z, (2.5)

with l = 1, . . . , D. Here, k = (k3, . . . , kD), ω = √
γ 2 + k2

and k2 = ∑D
l=3 k

2
l . For the scalar products one has k · z =∑D

l=3 kl z
l and k · εσ = ∑D

l=3 klεσ l . The spatial components
in (2.4) and (2.5) are given in cylindrical coordinates (r, φ, z).
For the components of the polarization vector we have εσ1 =
εσ2 = 0, σ = 2, . . . , D − 1, and the relations

D∑

l,n=3

(ω2δnl − klkn)εσ lεσ ′n = γ 2δσσ ′ ,

ω2
D−1∑

σ=2

εσnεσ l − knkl = γ 2δnl , (2.6)

for l, n = 3, . . . , D. The mode functions are specified by the
set of quantum numbers β = (γ,m,k, σ ) and in (2.2)

∑

β

=
D−1∑

σ=1

∞∑

m=−∞

∫
dk

∫ ∞

0
dγ. (2.7)

123



 478 Page 4 of 13 Eur. Phys. J. C   (2017) 77:478 

We have a single mode of the TE type (σ = 1) and D − 2
modes of the TM type (σ = 2, . . . , D − 1).

The mode functions for vector fields are orthonormalized
by the condition
∫

dDx
√|g|g00[A∗

(β ′)ν(x)∇0A
ν
(β)(x)

− (∇0A
∗
(β ′)ν(x))A

ν
(β)(x)] = 4iπδββ ′ , (2.8)

where∇μ stands for the covariant derivative and δββ ′ is under-
stood as the Kronecker symbol for discrete components of
the collective index β (m and σ ) and the Dirac delta func-
tion for the continuous ones (γ and k). From (2.8) for the
normalization coefficient cβ we get

|cβ |2 = q

4(2πα)D−3γ
, (2.9)

for all the polarizations σ = 1, . . . , D − 1.
The Minkowskian limit of the problem under considera-

tion corresponds to α → ∞ for a fixed value of the proper
time t . In this limit one has η = αe−t/α ≈ α − t and, up
to the phase (which can be absorbed into the normalization
coefficient cβ ), the function ηD/2−1H (1)

D/2−1(ωη) is reduced

to
√

2/(πω)α(D−3)/2e−iωt . As a result, from (2.4) and (2.5)
one gets the corresponding mode functions for a string in
background of (D + 1)-dimensional Minkowski spacetime.
The case D = 3 has been considered previously in [40]. The
electromagnetic field is conformally invariant in D = 3 and
the modes (2.4) and (2.5) coincide with the Minkowskian
modes having the time dependence e−iωη.

3 Two-point functions

We consider a free field theory (the only interaction is with
the background gravitational field) and all the information
as regards the vacuum state is encoded in two-point func-
tions. Given the complete set of normalized mode functions
for the vector potential, we can evaluate the two-point func-
tion 〈0|Al(x)Am(x ′)|0〉 ≡ 〈Al(x)Am(x ′)〉 for the electro-
magnetic field by using the mode-sum formula (2.2):

〈Al(x)Am(x ′)〉 =
∑

β

A(β)l(x)A
∗
(β)m(x ′), (3.1)

with
∑

β from (2.7). Substituting the functions (2.4), (2.5)
and using Eq. (2.6), the two-point function is presented in
the form

〈Al(x)Ap(x
′)〉 = q(ηη′)D/2−1

π2(2πα)D−3

∞∑

m=−∞
eimq�φ

∫
dk eik·�z

×
∫ ∞

0
dγ

γ

ω2 KD/2−1(e
−iπ/2ηω)KD/2−1

× (eiπ/2η′ω) flp(k, γ, r, r ′), (3.2)

where �φ = φ − φ′, �z = z− z′ and instead of the Hankel
function we have introduced the Macdonald function Kν(x).
In (3.2), the functions of the radial coordinates are defined
by the expressions

f11(k, γ, r, r ′) = k2 J ′
q|m|(γ r)J ′

q|m|(γ r ′)

+ (k2 + γ 2)
q2m2

γ 2rr ′ Jq|m|(γ r)Jq|m|(γ r ′),

f12(k, γ, r, r ′) = −i
qm

γ r

[
rk2 J ′

q|m|(γ r)Jq|m|(γ r ′)

+ r ′ω2 J ′
q|m|(γ r ′)Jq|m|(γ r)

]
,

f22(k, γ, r, r ′) = q2m2

γ 2 k2 Jq|m|(γ r)Jq|m|(γ r ′)

+ rr ′ω2 J ′
q|m|(γ r)J ′

q|m|(γ r ′), (3.3)

and

f1l(k, γ, r, r ′) = iklγ J ′
q|m|(γ r)Jq|m|(γ r ′),

f2l(k, γ, r, r ′) = −qmkl Jq|m|(γ r)Jq|m|(γ r ′),
flp(k, γ, r, r ′) = (ω2δlp − klkp)Jq|m|(γ r)Jq|m|(γ r ′),

(3.4)

with l, p = 3, . . . , D − 1. The remaining nonzero compo-
nents are found by using the relation

flp(k, γ, r, r ′) = f ∗
pl(k, γ, r ′, r). (3.5)

Having the two-point functions we can evaluate the VEVs
of the squared electric and magnetic fields. For the VEV of
the squared electric field one has

〈E2〉 = lim
x ′→x

CE (x, x ′), (3.6)

where the corresponding two-point function is expressed as

CE (x, x ′) = −g00′
(x, x ′)glp′

(x, x ′)∂0∂
′
0〈Al(x)Ap(x

′)〉,
(3.7)

with the parallel propagator gμν′
(x, x ′). For the geometry

under consideration the nonzero components of the latter are
given by

g00′
(x, x ′) = −gll

′
(x, x ′) = ηη′

α2 ,

g11′
(x, x ′) = rr ′g22′

(x, x ′) = −ηη′

α2 cos �φ,

rg21′
(x, x ′) = −r ′g12′

(x, x ′) = ηη′

α2 sin �φ, (3.8)

where l = 3, . . . , D.
By taking into account the representation (3.2) we find the

expression

CE (x, x ′) = 8q(ηη′)D/2+1

(2π)D−1αD+1

∞∑′

m=0

{
cos(mq�φ)
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×[
(D − 2)J (0,2)

D/2−2 + (D − 3)J (1,1)
D/2−2

]

+
[

cos(mq�φ) cos �φ

(
∂r∂r ′ + q2m2

rr ′

)

+qm

rr ′ sin(mq�φ) sin �φ

×(
r∂r + r ′∂r ′

)] (J (0,1)
D/2−2 + 2J (1,0)

D/2−2

)}
,

(3.9)

where

J (n,p)
ν =

∫
dk eik·�z

∫ ∞

0
dγ k2nγ 2p−1Kν(e

−iπ/2ωη)

×Kν (eiπ/2ωη′)Jqm(γ r)Jqm(γ r ′). (3.10)

The prime on the summation sign in (3.9) means that the term
m = 0 should be taken with an additional coefficient 1/2. The
integrals (3.10) for n = 0, 1 and p = 0, 1, 2 are evaluated
in the appendix. By using the corresponding results (A.13),
(A.15) and (A.16), the correlator is presented as

CE (x, x ′) = 16q(ηη′)D/2+1

πD/2αD+1

∫ ∞

0
du uD/2

× eu(η2+η′2−|�z|2)KD/2−2(2ηη′u)

×
{
[∂ww + 2(D/2 − 1 − |�z|2u)]

×
[

cos �φ(∂w + b) − 1

w
sin �φ∂�φ

]

+ (D − 2)∂ww+(D−3)(D/2−1−|�z|2u)

}

×
∞∑′

m=0

cos(mq�φ)e−bw Iqm(w), (3.11)

with the notation

w = 2rr ′u, b = r2 + r ′2

2rr ′ . (3.12)

For the further transformation of Eq. (3.11) we use the
formula [30,31,41]

∞∑′

m=0

cos(qm�φ)Iqm(w) = 1

2q

∑

l

ew cos(2lπ/q−�φ)

− 1

4π

∑

j=±1

∫ ∞

0
dy

sin(qπ + jq�φ)e−w cosh y

cosh(qy) − cos(qπ + jq�φ)
,

(3.13)

where the summation in the first term on the right-hand side
goes under the condition

− q/2 + q�φ/(2π) � l � q/2 + q�φ/(2π). (3.14)

If −q/2+q�φ/(2π) or q/2+q�φ/(2π) are integers, then
the corresponding terms in the first sum on the right-hand

side of (3.13) should be taken with the coefficient 1/2. The
application of (3.13) leads to the expression

CE (x, x ′) = C (1)
E (x, x ′) + sin �φ∂�φC

(2)
E (x, x ′). (3.15)

Here and below we use the notation

C (i)
J (x, x ′) = 8(ηη′)D/2+1

πD/2αD+1

×
[
∑

l

g(i)
J (x, x ′,− cos(2lπ/q − �φ)) − q

2π

×
∑

j=±1

∫ ∞

0
dy

sin(qπ + jq�φ)g(i)
J (x, x ′, cosh y)

cosh(qy) − cos(qπ + jq�φ)

⎤

⎦ ,

(3.16)

for i = 1, 2 and J = E, M . The function with J = M
will appear in the expression for the VEV of the squared
magnetic field. The functions g(i)

J (x, x ′, y) in (3.16) have
the representation

g(i)
J (x, x ′, y) =

∫ ∞

0
du uD/2eu(η2+η′2−|�z|2−r2−r ′2−2rr ′y)

× KνJ (2ηη′u)h(i)
J (y, u), (3.17)

where

νJ =
{
D/2 − 2, J = E,

D/2 − 1, J = M.
(3.18)

For the electric field, the functions in the integrand of (3.17)
are given by the expressions

h(1)
E (y, u) = (D − 2 − y cos �φ)[1 − u(r2 + r ′2 + 2rr ′y)]

+ (D − 3 − 2y cos �φ)(D/2 − 1 − |�z|2u),

h(2)
E (y, u) = 1

2rr ′u
[u(r2 + r ′2 + 2rr ′y)

− 2(D/2 − 1 − |�z|2u)]. (3.19)

The functions h(i)
M (y, u) for the magnetic field will be defined

below.
The contribution of the l = 0 term in (3.16) to the function

(3.15) corresponds to the correlator in dS spacetime in the
absence of the cosmic string (for the two-point functions of
vector fields, including the massive ones; see [42–48]). It is
simplified to

C (dS)
E (x, x ′) = 2(D − 1)

(2π)D/2αD+1

∫ ∞

0
du uD/2euZ(x,x ′)

×
(
D − u

|�x|2
ηη′

)
KD/2−2(u), (3.20)

where |�x|2 = r2 + r ′2 − 2rr ′ cos �φ + |�z|2 is the square
of the spatial distance between the points x and x ′ and we
have defined the dS invariant quantity

Z(x, x ′) = 1 + (�η)2 − |�x|2
2ηη′ . (3.21)
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For the latter one has Z(x, x ′) = cos[σ(x, x ′)/α], with
σ(x, x ′) being the proper distance along the shortest geodesic
connecting the points x and x ′ if they are spacelike separated.
The integral in (3.20) is expressed in terms of the hypergeo-
metric function. Separating the l = 0 terms in the expressions
for C (1)

E (x, x ′) and C (2)
E (x, x ′), the remaining part in (3.15)

corresponds to the contribution induced by the presence of
the cosmic string.

For points x and x ′ close to each other, the dominant con-
tribution to the integral in (3.20) comes from large values of
u and we can use the corresponding asymptotic for the func-
tion KD/2−2(u). To the leading order, for the pure dS part
this gives

C (dS)
E (x, x ′) ≈ 2(D − 1)�((D + 1)/2)

π(D−1)/2σ D+1(x, x ′)

×
[
D − (D + 1)|�x|2

|�x|2 − (�η)2

]
. (3.22)

In this limit the effects of the background curvature are small.
Note that, for points outside the cosmic string core, r �=
0, the divergences in the coincidence limit of CE (x, x ′) are
contained in the pure dS partC (dS)

E (x, x ′) only. This is related
to the fact that in our simplified model the presence of the
cosmic string does not change the local geometry at those
points.

4 VEV of the squared electric field

The VEV of the squared electric field is obtained from
(3.15) in the coincidence limit. Separating the pure dS part
C (dS)
E (x, x ′), the remaining topological contribution is finite

in that limit for r �= 0. Consequently, the renormalization is
reduced to the one in dS spacetime. The contribution of the
last term in (3.15) to the cosmic string-induced part in the
VEV of the field squared vanishes. As a result, the VEV of
the squared electric field is presented in the decomposed form

〈E2〉 = 〈E2〉dS + 8α−D−1

(2π)D/2

⎡

⎣
[q/2]∑

l=1

gE (r/η, sl)

− q

π
sin(qπ)

∫ ∞

0
dy

gE (r/η, cosh y)

cosh(2qy) − cos(qπ)

⎤

⎦ ,

(4.1)

where [q/2] is the integer part of q/2. In (4.1), 〈E2〉dS is
the renormalized VEV in the absence of the cosmic string
and the remaining part is induced by the cosmic string (topo-
logical part). Here and in what follows we use the notation
sl = sin(πl/q) and

gE (x, y) =
∫ ∞

0
du uD/2KD/2−2(u)eu−2x2 y2u

×[2ux2y2(2y2 − D + 1) + (D − 1)(D/2 − 2y2)].
(4.2)

If the parameter q is equal to an even integer the term l = q/2
in (4.1) should be taken with an additional coefficient 1/2. The
VEV (4.1) depends on r and η in the form of the combination
r/η. The latter property is a consequence of the maximal sym-
metry of dS spacetime. Note that, for a given η, the ratio αr/η
is the proper distance from the string. Hence, r/η is the proper
distance measured in units of the dS curvature scale α. From
the maximal symmetry of dS spacetime and of the Bunch–
Davies vacuum state we expect that the pure dS part does not
depend on the spacetime point and 〈E2〉dS = const ·α−D−1.

For odd values of D the integral in (4.2) is expressed in
terms of elementary functions. In particular, for D = 3 and
D = 5 one has

gE (x, y) = −
√

π

2

1

4x4y4 , D = 3,

gE (x, y) = −
√

π

2

1 + y2

2x6y6 , D = 5. (4.3)

In these cases, the topological part in the squared electric
field is written in terms of the function

cn(q) =
[q/2]∑

l=1

s−n
l − q

π
sin(qπ)

∫ ∞

0
dy

× cosh−n y

cosh(2qy) − cos(qπ)
. (4.4)

For even n, this function can be found by using the recurrence
scheme described in [49]. In particular, one has c2(q) =
(q2 − 1)/6 and

c4(q) = q2 − 1

90
(q2 + 11),

c6(q) = q2 − 1

1890
(2q4 + 23q2 + 191). (4.5)

As a result, the corresponding VEVs are presented as

〈E2〉 = 〈E2〉dS − (q2 − 1)(q2 + 11)

180π(αr/η)4 (4.6)

for D = 3, and

〈E2〉 = 〈E2〉dS − (q2 − 1)(q4 + 22q2 + 211)

1890π2(αr/η)6 (4.7)

for D = 5. In the case D = 3 the electromagnetic field
is conformally invariant and the topological part in (4.6) is
obtained from the corresponding result for a cosmic string in
Minkowski bulk by the standard conformal transformation.
The latter is reduced to the multiplication of the Minkowskian
result by the factor (η/α)4.
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As has been mentioned before, the Minkowskian limit cor-
responds to α → ∞ for a fixed value of the time coordinate t .
In this case one has η ≈ α − t and η is large. Hence, we need
the asymptotic of the function (4.2) for small values of x .
In this limit the dominant contribution to the integral comes
from large values of u and using the asymptotic expression
for the Macdonald function for large argument, to the leading
order we find

gE (x, y) ≈ −√
π

�((D + 1)/2)

2D/2+2xD+1yD+1

×[2(D − 3)y2 + D − 1]. (4.8)

As a consequence, for a string in the Minkowski bulk one
gets

〈E2〉(M) = − 2�((D + 1)/2)

(4π)(D−1)/2r D+1

[
(D − 3)cD−1(q)

+ D − 1

2
cD+1(q)

]
. (4.9)

For D = 3, this result is conformally related to the topo-
logical part in (4.6). It is of interest to note that, though
the electromagnetic field is not conformally invariant for
D = 5, the latter property is valid in this case as well:
〈E2〉(M) = (〈E2〉 − 〈E2〉dS)(α/η)D+1, for D = 3, 5.

Now let us consider the asymptotic behavior of the VEV
(4.1) at large and small distances from the string. At large
distances, r/η  1, we need the asymptotic expressions for
the function gE (x, y) in the limit x  1. In this limit the
dominant contribution to the integral in (4.2) comes from the
region near the lower limit of the integration. By using the
asymptotic expression for the Macdonald function for small
argument, to the leading order we get

gE (x, y) ≈ 2D/2−5

y6x6 �

(
D

2
− 2

) [
(D − 1)

(
D

2
− 3

)

+ 2(4 − D)y2
]

(4.10)

for D > 4, and gE (x, y) ≈ −3 ln(yx)/(2y6x6) for D = 4.
In the case D > 4 this gives

〈E2〉 ≈ 〈E2〉dS + �(D/2 − 2)

4πD/2αD+1(r/η)6

[
2(4 − D)c4(q)

+ (D − 1)

(
D

2
− 3

)
c6(q)

]
, (4.11)

with the functions (4.5). Note that for D = 5 the asymptotic
(4.11) coincides with the exact result (4.7). For D = 4 the
large distance asymptotic is given by

〈E2〉 ≈ 〈E2〉dS − (q2 − 1) ln(r/η)

630π2α5(r/η)6
(2q4 + 23q2 + 191).

(4.12)

Hence, at large distances from the string, r/η  1, the topo-
logical part in the VEV of the electric field squared decays
as (η/r)4 for D = 3, as ln(r/η)(η/r)6 for D = 4 and as
(η/r)6 for D > 4. The pure dS part 〈E2〉dS is a constant and
it dominates in the total VEV at large distances. Note that at
large distances from the string the influence of the gravita-
tional field on the VEV is essential. In the Minkowskian case
the decay of the VEV is as 1/r D+1 (see (4.9)) and depends
on the number of spatial dimension. For the dS bulk the VEV
behaves as 1/r6 for all spatial dimensions D > 4.

At proper distances from the string smaller than the dS
curvature radius one has r/η � 1 and the dominant contri-
bution to the integral in (4.2) comes from large values of u.
The topological part dominates near the string and by calcu-
lations similar to those for the Minkowskian limit we get

〈E2〉 ≈ (η/α)D+1〈E2〉(M), r/η � 1, (4.13)

with 〈E2〉(M) given by (4.9). This result is natural because
near the string the dominant contribution to the VEV comes
from the fluctuations with wavelengths smaller than the cur-
vature radius and the influence of the background gravita-
tional field on the corresponding modes is weak.

The VEV of the electric field squared determines the
Casimir–Polder interaction energy between the cosmic string
and a neutral polarizable microparticle placed close to the
string, U (r) = −αP 〈E2〉, where αP is the polarizability of
the particle (in the absence of dispersion). The correlators of
the electromagnetic field and the Casimir–Polder potential
in the geometry of cosmic string on background of D = 3
Minkowski spacetime were investigated in [50,51].

5 Magnetic field correlators and VEV of the energy
density

As a next characteristic of the vacuum state we consider the
VEV of the Lagrangian density:

〈L〉 = − 1

16π
gμρgνσ 〈FμνFρσ 〉. (5.1)

Note that the quantity gμρgνσ 〈FμνFρσ 〉 is the Abelian analog
of the gluon condensate in quantum chromodynamics. The
VEV (5.1) is presented as the coincidence limit

〈L〉 = lim
x ′→x

CL(x, x ′), (5.2)

with the corresponding correlator

CL(x, x ′) = − 1

16π
gμρ′

(x, x ′)gνσ ′
(x, x ′)〈Fμν(x)Fρσ (x ′)〉.

(5.3)
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The latter is decomposed into the electric and magnetic parts
as

CL(x, x ′) = 1

8π

[
CE (x, x ′) − CM (x, x ′)], (5.4)

where the magnetic part is given by the expression

CM (x, x ′) = 1

2
glm

′
(x, x ′)gnp′

(x, x ′)〈Fln(x)Fmp(x
′)〉

= [glm′
(x, x ′)gnp′

(x, x ′)
−gnm

′
(x, x ′)glp′

(x, x ′)]∂l∂m′ 〈An(x)Ap′(x ′)〉,
(5.5)

with the summation over the spatial indices l,m, n, p =
1, 2, . . . , D (for a scheme to measure the correlation func-
tions for cosmological magnetic fields based on TeV blazar
observations see [52]).

By using (3.2), after long calculations, the magnetic part
is presented in the form

CM (x, x ′) = 2q(ηη′)D/2+1

π2(2π)D−3αD+1

∞∑′

m=0

×
{[

cos(mq�φ) cos �φ

(
∂r∂r ′ + q2m2

rr ′

)

+ qm

rr ′ sin(mq�φ) sin �φ(r∂r + r ′∂r ′)

]

×((D − 2)J (0,1)
D/2−1 + 2J (1,0)

D/2−1)

+ cos(mq�φ)[J (0,2)
D/2−1 + (D − 3)J (1,1)

D/2−1]
}

.

(5.6)

By taking into account the representations for the functions
J (n,p)

ν given in the appendix, for the correlator one gets

CM (x, x ′) = 16q(ηη′)D/2+1

πD/2αD+1

∫ ∞

0
du uD/2eu(η2+η′2−|�z|2)

× KD/2−1(2ηη′u)

×
{
[(D − 2)∂ww + 2(D/2 − 1 − |�z|2u)]

×
[

cos �φ(∂w + b) − 1

w
sin �φ∂�φ

]

+ ∂ww + (D − 3)(D/2 − 1 − |�z|2u)

}

×
∞∑′

m=0

cos(mq�φ)e−bw Iqm(w). (5.7)

The further transformation is similar to that employed for
the electric field correlator. By using Eq. (3.13) we find

CM (x, x ′) = C (1)
M (x, x ′) + sin �φ∂�φC

(2)
M (x, x ′), (5.8)

where the functionsC (i)
M (x, x ′) are defined in (3.16) with J =

M . In the corresponding definition the function g(i)
M (x, x ′, y)

is given by Eq. (3.17) with the functions in the integrand

h(1)
M (y, u) = [1−(D−2)y cos �φ][1−u(r2+r ′2 + 2rr ′y)]

+ (D − 3 − 2y cos �φ)(D/2 − 1 − |�z|2u),

(5.9)

and h(2)
M (y, u) = h(2)

E (y, u). The contributions of the l =
0 terms in (3.16)–(5.8) correspond to the correlator in dS
spacetime in the absence of the cosmic string (q = 1):

C (dS)
M (x, x ′) = 2(D − 1)

(2π)D/2αD+1

×
∫ ∞

0
du uD/2euZ(x,x ′)

(
D − u

|�x|2
ηη′

)
KD/2−1(u).

(5.10)

For D = 3 the electric and magnetic correlators coincide and,
hence, the correlator for the Lagrangian density vanishes. For
close points x and x ′, the leading term in the corresponding
asymptotic expansion coincides with that for the correlator
of the electric field, C (dS)

M (x, x ′) ≈ C (dS)
E (x, x ′), and is given

by (3.22).
In (5.8), separating the l = 0 terms in the expressions

(3.16) for the functions C (i)
M (x, x ′), the remaining part is the

contribution induced by the cosmic string. For r �= 0, the
latter is finite in the coincidence limit. The renormalization
is required for the pure dS part only. Hence, for the VEV of
the squared magnetic field,

〈B2〉 = lim
x ′→x

CM (x, x ′), (5.11)

one finds the decomposition

〈B2〉 = 〈B2〉dS + 8α−D−1

(2π)D/2

⎡

⎣
[q/2]∑

l=1

gM (r/η, sl)

− q

π
sin(qπ)

∫ ∞

0
dy

gM (r/η, cosh y)

cosh(2qy) − cos(qπ)

]
,

(5.12)

with the function

gM (x, y) =
∫ ∞

0
du uD/2KD/2−1(u)eu−2x2 y2u{(D−1)D/2

− 4(D−2)y2+2x2y2u[2(D−2)y2−D+1]}.
(5.13)

Similar to (4.1), ifq/2 is an integer, the term l = q/2 in (5.12)
should be taken with an additional coefficient 1/2. Note that
for D > 3 the magnetic part of the field tensor is not a spatial
vector. In (5.12), 〈B2〉dS is the corresponding renormalized
quantity in the absence of the cosmic string and, because of
the maximal symmetry of dS spacetime, does not depend
on the spacetime point. From the dimensional arguments we
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expect that 〈B2〉dS = const ·α−D−1. For D = 3, the VEV of
the squared magnetic field has been investigated in [53] by
using the adiabatic renormalization procedure. In this special
case 〈B2〉dS = 19/(40πα4) (note the different units used
here and in [53]).

For odd D, the function gM (x, y) is expressed in terms of
the elementary functions. In particular, for D = 3 it coincides
with gE (x, y), given by (4.3), and for D = 5 one has

gM (x, y) =
√

π

2

(
3 + x2

)
y2 − 1

2x6y6 , D = 5. (5.14)

In the latter case, the VEV of the squared magnetic field is
presented as

〈B2〉 = 〈B2〉dS + (3 + r2/η2)c4(q) − c6(q)

2π2(αr/η)6 , (5.15)

where the functions c4(q) and c6(q) are defined in (4.5).
Let us consider the asymptotic behavior of the VEV (5.12)

at large and small distances from the string. If the proper
distance from the string is much smaller than the curvature
radius of the dS spacetime one has r/η � 1. For small x the
dominant contribution to (5.13) comes from large values of
u. By using the corresponding asymptotic for the Macdonald
function, to the leading order we get

〈B2〉 ≈ (η/α)D+1〈B2〉(M), (5.16)

where

〈B2〉(M) = 2�((D + 1)/2)

(4π)(D−1)/2r D+1

×
[
(D − 3)(D − 2)cD−1(q) − D − 1

2
cD+1(q)

]
(5.17)

is the corresponding VEV for the cosmic string in Minkowski
bulk. In particular, for D = 3 one has 〈B2〉(M) = 〈E2〉(M)

with 〈E2〉(M) given by the last term in the right-hand side of
(4.6).

At large distances from the string, r/η  1, we need the
asymptotic of the function gM (x, y) for large x . In this limit,
the dominant contribution to the integral in (5.13) comes from
the region near the lower limit of the integration and for the
leading term one finds

gM (x, y) ≈ 2D/2−5

y4x4 (D − 1)(D − 4)�(D/2 − 1). (5.18)

For D = 4 the leading term vanishes and we need to consider
the next to the leading contribution:

gM (x, y) ≈ y2 − 3/4

y6x6 . (5.19)

By taking into account (4.5) and (5.18), at distances r/η  1
one gets

〈B2〉 ≈ 〈B2〉dS + (D − 1)(D − 4)�(D/2 − 1)

360πD/2αD+1(r/η)4

Fig. 1 Topological contributions in the VEVs of the squared electric
and magnetic fields for q = 2.5 and for spatial dimensions D = 3, 4, 5
(the numbers near the curves). The full/dashed curves correspond to the
electric/magnetic fields

× (q2 − 1)(q2 + 11) (5.20)

for D �= 4, and

〈B2〉 ≈ 〈B2〉dS + 4c4(q) − 3c6(q)

2π2α5(r/η)6
(5.21)

for D = 4. In the special case D = 3, the asymptotic (5.20)
coincides with the exact result.

In Fig. 1 we have plotted the topological contributions in
the VEVs of the squared electric and magnetic fields, 〈F2〉t =
〈F2〉 − 〈F2〉dS, F = E, B, for q = 2.5 and for spatial
dimensions D = 3, 4, 5 (the numbers near the curves). The
full/dashed curves correspond to the electric/magnetic fields.
In the case D = 3 one has 〈E2〉t = 〈B2〉t . Note that for
D = 4, 5 the VEVs of the squared electric and magnetic
fields have opposite signs. The Casimir–Polder forces acting
on a polarizable particle are attractive.

Among the most interesting features of the inflation is
the transition from quantum-to-classical behavior of quan-
tum fluctuations during the quasi-exponential expansion of
the universe. An important example of this type of effects is
the classicalization of the vacuum fluctuations of the inflaton
field which underlies the most popular models of genera-
tion of large-scale structure in the universe. A similar effect
of classicalization should take place for the electromagnetic
fluctuations. In [53], the quantum-to-classical transition of
super-Hubble magnetic modes during inflation has been con-
sidered as a possible mechanism for the generation of galactic
and galaxy cluster magnetic fields (see also [54,55] for the
further discussion). As has been discussed above, the pres-
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ence of a cosmic string induces shifts in the VEVs of the
squared electric and magnetic fields. As a consequence of the
quantum-to-classical transition of the corresponding fluctu-
ations during the dS expansion, after inflation these shifts
will be imprinted as classical stochastic fluctuations of the
electric and magnetic fields surrounding the cosmic string. In
the post inflationary radiation dominated era the conductivity
is high and the currents in the cosmic plasma eliminate the
electric fields whereas the magnetic counterparts are frozen.
As a consequence, the cosmic strings will be surrounded by
large-scale magnetic fields. These fields would be among the
distinctive features of the cosmic strings produced during the
inflation and also of the corresponding inflationary models.
Note that various types of mechanisms for the generation of
primordial magnetic fields from cosmic strings in the post-
inflationary era have been discussed in the literature (see,
for instance, [56–63]). For cosmic strings carrying a nonzero
magnetic flux in the core, azimuthal currents for charged
fields are generated around the string (see [30,31] and the
references therein). These currents provide another mech-
anism for the generation of magnetic fields by the cosmic
strings.

Having the VEVs for the squared electric and magnetic
fields, we can find the VEV of the energy density ε as

〈ε〉 = 〈E2〉 + 〈B2〉
8π

. (5.22)

It is decomposed into the pure dS part, 〈ε〉dS, and the topo-
logical contribution:

〈ε〉 = 〈ε〉dS + 2α−D−1

(2π)D/2+1

⎡

⎣
[q/2]∑

l=1

g0(r/η, sl)

− q

π
sin(qπ)

∫ ∞

0
dy

g0(r/η, cosh y)

cosh(2qy) − cos(qπ)

⎤

⎦, (5.23)

with g0(x, y) = gE (x, y) + gM (x, y). If q is equal to an
even integer, the term l = q/2 in (5.23) is taken with an
additional coefficient 1/2. From the maximal symmetry of
the dS spacetime it follows that 〈ε〉dS = const/αD+1. In
the special case D = 3 the latter is completely determined
by the conformal anomaly (see, for instance, [64]): 〈ε〉dS =
31/(480π2α4). Combining this with the result for 〈B2〉dS

we can find the VEV of the squared electric field: 〈E2〉dS =
1/(24πα4). In this case, the contributions of the electric and
magnetic parts to the topological term in the VEV of the
energy density are the same and the VEV is conformally
related to the corresponding result on the Minkowski bulk
found in [65,66].

Near the string, r/η � 1, the VEV of the energy density
is dominated by the topological part and to the leading order
one has

Fig. 2 Topological contributions in the VEV of the energy density
in spatial dimensions D = 3, 4, 5 (the numbers near the curves) for
q = 2.5

〈ε〉 ≈ �((D + 1)/2)

(4π)(D+1)/2(αr/η)D+1
[(D − 3)2cD−1(q)

− (D − 1)cD+1(q)]. (5.24)

The corresponding VEV in the Minkowski bulk is obtained
from the right-hand side multiplying by the factor (α/η)D+1.
Depending on the parameters D and q, the energy density
(5.24) can be either negative or positive. For D = 3 it is
always negative. At large distances from the cosmic string
and for D > 4 the topological contribution in the energy den-
sity is dominated by the magnetic part and decays as (η/r)4.
For D = 4 and at large distances the electric part domi-
nates and the energy density decays like (η/r)6 ln(r/η). In
Fig. 2 we display the dependence of the topological con-
tribution in the vacuum energy density as a function of the
proper distance from the string (measured in units of dS cur-
vature scale). The graphs are plotted for spatial dimensions
D = 3, 4, 5. As is seen, in general, the energy density is not
a monotonic function of the distance from the string. More-
over, in the case D = 5 the energy density changes the sign:
it is negative near the string (the electric part dominates) and
positive at large distances from the string (the magnetic con-
tribution dominates).

6 Conclusion

In the present paper we have investigated the influence of the
cosmic string on the vacuum fluctuations of the electromag-
netic field in background of (D + 1)-dimensional dS space-
time, assuming that the field is prepared in the state which
is the analog of the Bunch–Davies vacuum state for a scalar
field. In the problem under consideration the only interaction
of the quantum electromagnetic field is with the background
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gravitational field and the information on the vacuum fluctu-
ations is encoded in the two-point functions. As such we have
considered the Wightman function. For the evaluation of the
latter we have used the direct summation over the complete
set of electromagnetic cylindrical modes. The corresponding
mode functions for separate polarizations are given by (2.4)
and (2.5).

Among the most important characteristics of the elec-
tromagnetic vacuum are the VEVs of the squared electric
and magnetic fields. The corresponding two-point functions
are given by (3.15) and (5.7), respectively, with the function
C (i)

J (x, x ′) defined in (3.16). One of the advantages for these
representations is that the contribution corresponding to dS
spacetime in the absence of the cosmic string is explicitly
extracted. In the model of the cosmic string under consider-
ation the local geometrical characteristics outside the string
core are not changed by the presence of the string. Conse-
quently, the divergences and the renormalization procedure
for the VEVs are the same as those in pure dS spacetime.
The topological parts do not require a renormalization. The
renormalized VEVs for the squared electric and magnetic
fields are presented in the decomposed form, Eqs. (4.1) and
(5.12), respectively, where the first terms in the right-hand
sides correspond to the renormalized VEVs in dS spacetime
in the absence of the cosmic string. As a consequence of
the maximal symmetry of dS spacetime and of the Bunch–
Davies vacuum state these contributions do not depend on
the spacetime coordinates.

The topological parts in the VEVs depend on the time and
the radial coordinate through the ratio r/η, which represents
the proper distance from the string measured in units of the dS
curvature radius. Near the string, the dominant contribution
to the VEVs comes from the fluctuations with short wave-
lengths and the VEVs coincide with those for the string in
Minkowski bulk with the distance from the string replaced
by the proper distance αr/η. The influence of the gravita-
tional field on the topological contributions in the VEVs is
crucial at proper distances larger than the curvature radius of
the background geometry. This contribution in the electric
field squared decays as (η/r)4 for D = 3, as ln(r/η)(η/r)6

for D = 4 and as (η/r)6 for D > 4. For the squared mag-
netic field the topological contribution decays as (η/r)4 for
D � 3. The exception is the case D = 4 where the corre-
sponding coefficient vanishes and the next term in the expan-
sion should be kept. In this case the topological term falls
off as (η/r)6. In the Minkowskian bulk the decay of the
VEVs is as 1/r D+1 for both the electric and the magnetic
fields.

The modifications of the electromagnetic field vacuum
fluctuations during the dS expansion phase, we have dis-
cussed here, will be imprinted in large-scale stochastic pertur-
bations of the electromagnetic fields surrounding the cosmic
string in the post-inflationary radiation dominated era. The

magnetic fields will be frozen in the cosmic plasma whereas
the electric fields will be eliminated by the induced currents.

We have also investigated the VEV of the electromagnetic
energy density, induced by a cosmic string. Near the string
the topological contribution dominates in the total VEV and
the energy density behaves as (η/r)D+1. At distances from
the string larger than the curvature radius of the dS spacetime
and for spatial dimensions D > 4, the topological part in the
energy density is dominated by the magnetic contribution and
decays as (η/r)4. For D = 4 the electric field contribution
dominates and at large distances the string-induced energy
density behaves as (η/r)6 ln(r/η). For D = 3 the topological
contribution in the energy density is negative and decays
as (η/r)4 for all distances. For other spatial dimensions the
energy density, in general, is not a monotonic function of the
distance from the string. For example, in the case D = 5 the
energy density is negative near the string and positive at large
distances. It has a maximum for some intermediate value of
the distance from the string.
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Appendix A: Evaluation of the integrals

Here we describe the evaluation of the integrals (3.10)
appearing in the expressions of the two-point functions for
the electromagnetic field. By using the integral representa-
tion [67]

Kν(e
−iπ/2ηω)Kν(e

iπ/2η′ω)

= 1

2

∫ +∞

−∞
dy e−2νy

∫ ∞

0

du

u
e−u/2−ω2β/(2u), (A.1)

with the notation

β = 2ηη′ cosh(2y) − η2 − η′2, (A.2)

and redefining the integration variable u/(2β) → u, one gets

J (n,p)
ν = 1

2

∫
dk eik·�z

∫ +∞

−∞
dy e−2νy

∫ ∞

0

du

u
e−uβ

×
∫ ∞

0
dγ k2nγ 2p−1e−ω2/4u Jqm(γ r)Jqm(γ r ′).

(A.3)
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The integration over k is done with the help of the formula
∫

dk k2neik·�z−k2/4u = (4π)D/2−1uD/2−1

×[4u(D/2 − 1 − |�z|2u)]ne−|�z|2u, (A.4)

where n = 0, 1. Next, the integral over y is expressed in
terms of the function Kν(2ηη′u) and we find

J (n,p)
ν = 1

2
(4π)D/2−1

∫ ∞

0
du uD/2−2

×[4u(D/2 − 1 − |�z|2u)]neu(η2+η′2−|�z|2)

× Kν(2ηη′u)

∫ ∞

0
dγ γ 2p−1e−γ 2/4u Jqm(γ r)Jqm(γ r ′).

(A.5)

For p = 1, 2 the integration over γ is done by using the
formula [68]
∫ ∞

0
dγ γ 2p−1e−γ 2/4u Jqm(γ r)Jqm(γ r ′)

= 2(4u2∂u)
p−1[ug(r, r ′, u)], (A.6)

with the function

g(r, r ′, u) = e−(r2+r ′2)u Iqm(2rr ′u). (A.7)

For the evaluation of the integral in (A.5) with p = 0 we use
the integral representation

e−γ 2/4u = γ 2
∫ ∞

1/4u
dt e−tγ 2

, (A.8)

and then apply Eq. (A.6) with p = 1 for the γ -integral. In
this way, we can see that

∫ ∞

0
dγ

e−γ 2/4u

γ
Jqm(γ r)Jqm(γ r ′) = 1

2

∫ u

0

dx

x
g(r, r ′, x).

(A.9)

The corresponding integral in the two-point function (3.9) is
acted by the operators with the results

(r∂r + r ′∂r ′)
∫ u

0

dx

x
g(r, r ′, x) = 2e−bw Iqm(w) (A.10)

and
(

∂r∂r ′ + q2m2

rr ′

) ∫ u

0

dx

x
g(r, r ′, x)

= 4ue−bw∂w Iqm(w), (A.11)

with the notation (3.12). In addition we have
(

∂r∂r ′ + q2m2

rr ′

)
g(r, r ′, u) = 4u∂w(we−bw∂w Iqm(w)).

(A.12)

Hence, we get the following results:

J (n,p)
ν = (4π)D/2−1

∫ ∞

0
du uD/2−2

×[4u(D/2 − 1 − |�z|2u)]neu(η2+η′2−|�z|2)

× Kν(2ηη′u)(4u2∂w)p−1[we−bw Iqm(w)] (A.13)

for p = 1, 2, and

J (1,0)
ν = 1

4
(4π)D/2−1

∫ ∞

0
du uD/2−2

×[4u(D/2 − 1 − |�z|2u)]neu(η2+η′2−|�z|2)

× Kν(2ηη′u)

∫ u

0

dx

x
g(r, r ′, x). (A.14)

The results for the latter integral after the action of the oper-
ators, appearing in (3.9), read

(r∂r + r ′∂r ′)J (1,0)
ν = 1

2
(4π)D/2−1

∫ ∞

0
du uD/2−2

×[4u(D/2 − 1 − |�z|2u)]n
× eu(η2+η′2−|�z|2)Kν(2ηη′u)e−bw Iqm(w) (A.15)

and
(

∂r∂r ′ + q2m2

rr ′

)
J (1,0)

ν = (4π)D/2−1
∫ ∞

0
du uD/2−1

×[4u(D/2 − 1 − |�z|2u)]n × eu(η2+η′2−|�z|2)

× Kν(2ηη′u)∂w[we−bw∂w Iqm(w)], (A.16)

with w and b defined by (3.12).

References

1. A.D. Linde, Particle Physics and Inflationary Cosmology (Har-
wood Academic Publishers, Chur, 1990)

2. D.H. Lyth, A. Riotto, Phys. Rep. 314, 1 (1999)
3. B.A. Bassett, S. Tsujikawa, D. Wands, Rev. Mod. Phys. 78, 537

(2007)
4. J. Martin, C. Ringeval, V. Vennin, Phys. Dark Univ. 5–6, 75 (2014)
5. A.G. Riess et al., Astron. J. 116, 1009 (1998)
6. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)
7. A.G. Riess et al., Astrophys. J. 659, 98 (2007)
8. D.N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007)
9. E. Komatsu et al., Astrophys. J. Suppl. Ser. 180, 330 (2009)

10. D.H. Weinberg et al., Phys. Rep. 530, 87 (2013)
11. P.A.R. Ade et al., A&A 571, A16 (2014)
12. M.R. Douglas, S. Kachru, Rev. Mod. Phys. 79, 733 (2007)
13. D.F. Chernoff, S.-H. Henry Tye, Int. J. Mod. Phys. D 24, 1530010

(2015)
14. P.P. Kronberg, Rep. Prog. Phys. 57, 325 (1994)
15. M. Giovannini, Int. J. Mod. Phys. D 13, 391 (2004)
16. A. Kandusa, K.E. Kunze, C.G. Tsagas, Phys. Rep. 505, 1 (2011)
17. R. Durrer, A. Neronov, Astron. Astrophys. Rev. 21, 62 (2013)
18. R. Basu, A. Vilenkin, Phys. Rev. D 50, 7150 (1994)
19. C.J.A.P. Martins, E.P.S. Shellard, Phys. Rev. D 54, 2535 (1996)
20. C.J.A.P. Martins, E.P.S. Shellard, Phys. Rev. D 65, 043514 (2002)
21. P.P. Avelino, C.J.A.P. Martins, E.P.S. Shellard, Phys. Rev. D 76,

083510 (2007)

123



Eur. Phys. J. C   (2017) 77:478 Page 13 of 13  478 

22. M. Hindmarsh, Prog. Theor. Phys. Suppl. 190, 197 (2011)
23. C. Ringeval. Adv. Astron. 2010, 380507 (2010)
24. A. Vilenkin, Phys. Rev. D 56, 3258 (1997)
25. A. Vilenkin, E.P.S. Shellard,Cosmic Strings andOther Topological

Defects (Cambridge University Press, Cambridge, 1994)
26. E. Witten, Phys. Lett. B 153, 243 (1985)
27. E.J. Copeland, L. Pogosian, T. Vachaspati, Class. Quantum Gravity

28, 204009 (2011)
28. S. Bellucci, E.R. Bezerra de Mello, A. de Padua, A.A. Saharian,

Eur. Phys. J. C 74, 2688 (2014)
29. H.F. Mota, E.R. Bezerra de Mello, K. Bakke, arXiv:1704.01860
30. E.R. Bezerra de Mello, V.B. Bezerra, A.A. Saharian, H.H. Haru-

tyunyan, Phys. Rev. D 91, 064034 (2015)
31. M.S. Maior de Sousa, R.F. Ribeiro, E.R. Bezerra de Mello, Phys.

Rev. D 93, 043545 (2016)
32. E.R. Bezerra de Mello, A.A. Saharian, J. High Energy Phys.

JHEP04, 046 (2009)
33. E.R. Bezerra de Mello, A.A. Saharian, J. High Energy Phys.

JHEP08, 038 (2010)
34. A. Mohammadi, E.R. Bezerra de Mello, A.A. Saharian, Class.

Quantum Gravity 32, 135002 (2015)
35. M. Giovannini, Phys. Rev. D 62, 123505 (2000)
36. A.M. Ghezelbash, R.B. Mann, Phys. Lett. B 537, 329 (2002)
37. A.H. Abbassi, A.M. Abbassi, H. Razmi, Phys. Rev. D 67, 103504

(2003)
38. A.A. Saharian, V.F. Manukyan, N.A. Saharyan, Int. J. Mod. Phys.

A 31, 1650183 (2016)
39. T.S. Bunch, P.C.W. Davies, Proc. R. Soc. A 360, 117 (1978)
40. E.R. Bezerra de Mello, V.B. Bezerra, A.A. Saharian, Phys. Lett. B

645, 245 (2007)
41. E.R. Bezerra de Mello, A.A. Saharian, Class. Quantum Gravity 29,

035006 (2012)
42. B. Allen, T. Jacobson, Commun. Math. Phys. 103, 669 (1986)
43. N.C. Tsamis, R.P. Woodard, J. Math. Phys. 48, 052306 (2007)
44. T. Garidi, J.P. Gazeau, S. Rouhani, M.V. Takook, J. Math. Phys.

49, 032501 (2008)

45. A. Higuchi, Y.C. Lee, J.R. Nicholas, Phys. Rev. D 80, 107502
(2009)

46. A. Youssef, Phys. Rev. Lett. 107, 021101 (2011)
47. M.B. Fröb, A. Higuchi, J. Math. Phys. 55, 062301 (2014)
48. G. Narain, arXiv:1408.6193
49. E.R. Bezerra de Mello, V.B. Bezerra, A.A. Saharian, A.S. Tarloyan,

Phys. Rev. D 74, 025017 (2006)
50. V.M. Bardeghyan, A.A. Saharian, J. Contemp. Phys. 45, 1 (2010)
51. A.A. Sahariana, A.S. Kotanjyan, Eur. Phys. J. C 71, 1765 (2011)
52. H. Tashiro, T. Vachaspati, Phys. Rev. D 87, 123527 (2013)
53. L. Campanelli, Phys. Rev. Lett. 111, 061301 (2013)
54. R. Durrer, G. Marozzi, M. Rinaldi, Phys. Rev. Lett. 111, 229001

(2013)
55. L. Campanelli, Phys. Rev. Lett. 111, 229002 (2013)
56. T. Vachaspati, A. Vilenkin, Phys. Rev. Lett. 67, 1057 (1991)
57. T. Vachaspati, Phys. Rev. D 45, 3487 (1992)
58. D.N. Vollick, Phys. Rev. D 48, 3585 (1993)
59. P.P. Avelino, E.P.S. Shellard, Phys. Rev. D 51, 5946 (1995)
60. K. Dimopoulos, Phys. Rev. D 57, 4629 (1998)
61. L. Hollenstein, C. Caprini, R. Crittenden, R. Maartens, Phys. Rev.

D 77, 063517 (2008)
62. L.V. Zadorozhna, B.I. Hnatyk, Yu.A. Sitenko, Ukr. J. Phys. 58, 398

(2013)
63. K. Horiguchi K. Ichiki, N. Sugiyama, Prog. Theor. Exp. Phys.

2016(8), 083E02 (2016)
64. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space

(Cambridge University Press, New York, 1982)
65. V.P. Frolov, E.M. Serebriany, Phys. Rev. D 35, 3779 (1987)
66. J.S. Dowker, Phys. Rev. D 36, 3742 (1987)
67. G.N. Watson, A Treatise on the Theory of Bessel Functions (Cam-

bridge University Press, Cambridge, 1966)
68. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and

Series, vol. II (Gordon and Breach, New York, 1986)

123

http://arxiv.org/abs/1704.01860
http://arxiv.org/abs/1408.6193

	Electromagnetic vacuum fluctuations around a cosmic string in de Sitter spacetime
	Abstract 
	1 Introduction
	2 Cylindrical electromagnetic modes
	3 Two-point functions
	4 VEV of the squared electric field
	5 Magnetic field correlators and VEV of the energy density
	6 Conclusion
	Acknowledgements
	Appendix A: Evaluation of the integrals
	References




