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Abstract

We expand the symmetry of the open finite-size SO(N) symmetric spin chain to O(N). We partition its 
space of states into the eigenspaces of the parity transformations in the flavor space, generating the subgroup 
Z

×(N−1)
2 . It is proven that the lowest-energy states in these eigenspaces are nondegenerate and assemble 

in antisymmetric tensors or pseudotensors. At the valence-bond solid point, they constitute the 2N−1-fold 
degenerate ground state with fully broken parity-transformation symmetry.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The spin-1 Heisenberg chain, in contrast to its spin- 1
2 analogue, is characterized by a gap and 

exponentially decaying correlation as was predicted by Haldane [1]. Its low-energy behavior is 
perfectly modeled by Affleck–Kennedy–Lieb–Tasaki (AKLT) chain with the exact valence-bond 
solid (VBS) ground state [2]. The Haldane phase has many fascinating properties, like a hidden 
string order parameter and edge states [3]. The two spin- 1

2 degrees of freedom at the edges 
are responsible for the fourfold near degeneracy of the open chain, which becomes exact at the 
AKLT point [4]. Kennedy and Tasaki (KT) explained this behavior by a spontaneous breaking 
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of a hidden Z2 × Z2 symmetry, formed by π -rotations around the coordinate axis [5]. They 
define nonlocal unitary transformation mapping the string order to the usual ferromagnetic order. 
Recently it was observed that the Haldane phase is protected by several discrete symmetries [6,7], 
including the above Z2 ×Z2 [7], and is characterized by a double degeneracy of the entanglement 
spectrum [8].

Nowadays the spin and fermion systems with higher symmetries attract much attention due to 
experiments in ultracold atoms [9] (see Ref. [10] for the review). Such systems are used for the 
classification of symmetry protected topological phases [11] and study of the entanglement spec-
trum [12]. The exact VBS ground states appear for certain SU(N) symmetric spin Hamiltonians 
[13]. The SO(5) generalization of the AKLT chain has appeared in the context of ladder models 
[14]. The construction has been extended recently to the SO(N) chain by Tu, Zhang and Xi-
ang [15]. The authors have revealed a hidden antiferromagnetic order, which is characterized by 
a nonlocal string order parameter. For the finite-size open chain, the related Z×(N−1)

2 symmetry, 
which consists of the π -rotations in the coordinate planes, is broken completely for odd N and 
partially for even N . Nevertheless, in both cases the ground state is 2N−1-fold degenerate. The 
parity effect in N persists also for the translationally invariant chain. In the thermodynamic limit, 
it is in the Haldane phase for an odd case and has a twofold degenerate ground state with broken 
translational symmetry for an even case. This fact is supported also by the SO(N) extension [16]
of the Lieb–Schultz–Mattis theorem [17].

In this article we consider the finite SO(N) bilinear–biquadratic spin chain with open bound-
aries and site-dependent couplings. We expand the symmetry to the O(N) group by the parity 
transformations (the coordinate reflections) in the flavor space. Then partition the entire space 
of states into the 2N−1 eigenspaces of the reflection operators, which generate another sub-
group Z×(N−1)

2 . For odd N these eigenspaces are uniquely specified the quantum numbers of 
the aforementioned π -rotation symmetry. For even N the additional Z2 symmetry is needed 
to separate them. For wide range of parameters we prove that the lowest-level state (relative 
ground state) in any eigenspace is nondegenerate. It is proven that the relative ground states 
in all eigenspaces with k odd reflection quantum numbers form k-th order antisymmetric ten-
sor. Herewith, the parity of k must coincide with the chain length parity. Note that the k-th and 
(N − k)-th order antisymmetric tensors differ by the additional sign under improper rotations. 
For example, for k = 0, N both are SO(N) singlets while they are, respectively, a scalar and 
a pseudoscalar in O(N) classification. For odd N , the tensor and pseudotensor lowest-energy 
states alternate each other with the k growth, while for even N , both multiplets appear together. 
In the SO(3) case, the ground state may be, at most, fourfold degenerate as was established earlier 
by Kennedy [18]. Using the Clebsch–Gordan decomposition of the O(N) spinors, constructed 
by Brauer and Weyl [19], the results for general couplings are verified at the VBS point with the 
exactly known ground state. The parity-transformation symmetry is broken completely to 2N−1

degenerate vacua, associated with the relative ground states from all eigenspaces.

2. O(N) symmetry and nonpositive basis

The Hamiltonian of the SO(N) open spin chain with nearest-neighboring interaction in vector 
representation has the following form:

H =
L−1∑ N∑ (

Jl T
ab
l+1T

ba
l − Kl T

ba
l+1T

ba
l

)
. (1)
l=1 a,b=1
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Here the T -operators are the local projectors acting on the corresponding spin state by

T ab = |a〉〈b|.
The spin couplings depend on site and take positive values anywhere:

Jl > 0, Kl > 0. (2)

The Hamiltonian is invariant under SO(N) rotations given by the generators

L̂ab =
∑

l

Lab
l , Lab

l = i(T ab
l − T ba

l )

and can be expressed as their bilinear–biquadratic combination. Up to a nonessential constant,

H =
∑

l

(
Jl Ll+1 · Ll + K ′

l (Ll+1 · Ll)
2), (3)

where

K ′
l = 1

N−2 (Jl − Kl),

and we set for the convenience

Li · Lj =
∑
a<b

Lab
i Lab

j .

The range of new couplings is:

K ′
l < 1

N−2Jl. (4)

It includes the integrable translationally invariant model at K ′ = N−4
(N−2)2 J [20], which gener-

alized Babujian–Takhatajan spin-1 integrable chain [21]. It also contains the model with exact 
VBS ground state at K ′ = 1

N
J , considered below [15,22]. Recently, its low-energy effective field 

theory has been studied [16].
Note that the symmetric combinations 

∑
l(T

ab
l + T ba

l ) complement the orthogonal group to 
the U(N). The first term in (1) just permutes the neighboring spins and possesses the unitary 
symmetry while the second term reduces it to the orthogonal group. In particular, it does not 
preserve the total number of each species,

N̂a =
∑

l

T aa
l ,

but preserves its parity. The latter corresponds to the reflection or parity transformation of the 
a-th flavor:

σ̂a = (−1)N̂a . (5)

The commutation with the SO(N) generators is

σ̂cL̂
abσ̂c = (−1)δca+δcb L̂ab. (6)

The reflections (5) expand SO(N) symmetry of the Hamiltonian (1) to the entire orthogonal 
group O(N), which includes also improper rotations.
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Evidently, the total number of spins equals the chain length, 
∑

a Na = L. Therefore, the quan-
tum numbers σa = ±1 of the flavor parity operators (5) are subjected to the rule

σ1σ2 . . . σN = (−1)L. (7)

This restricts the number of independent parity transformations to N − 1, which are reduced in 
this representation to the group Z×(N−1)

2 . One can choose, for instance, the reflection operators 
of the first N − 1 flavors as a set of its generators.

Let us focus first on the chains with even number of spins. In this case it can be described as a 
quotient of the Z×N

2 group, formed by independent reflections, by the Z2 group, describing the 
simultaneous reflection of all flavors: σ̂1 . . . σ̂N . Moreover, in case of SO(2n + 1) symmetry, it 
coincides also with the group, formed by the rotations σ̂aσ̂b of the planes, spanned by the a-th 
and b-th flavor axis, on the angle ϕ = π . Indeed, due to equation (7), any single reflection σ̂a can 
be expressed in terms of the π -rotations. In particular, for the SO(3) chain, they are described 
by the relation σ̂1 = σ̂2σ̂3 together with two others obtained by the cyclic permutation of the in-
dexes. For the chains with SO(2n) symmetry, the relation (7) reduces the number of independent 
π -rotations by one, so that they form now the subgroup Z×(N−2)

2 . An additional Z2 reflection 
(one can choose, for instance, σ̂1) complements it to the entire parity-transformation group. For 
the odd-site chains with SO(2n + 1) symmetry the generators of the parity-transformation and 
π -rotation groups differ by sign, like in the SO(3) case, where we have σ̂1 = −σ̂2σ̂3, etc.

2.1. Nonpositive basis

The existence of basis where the off-diagonal elements of the Hamiltonian are nonpositive 
has a crucial significance for the proof of the nondegeneracy of the lowest-energy level in the 
entire space of states or the subspaces specified by good quantum numbers [23,17,24]. Such 
basis has no minus sign problem and can be used for Monte Carlo simulations. Various spin and 
fermion lattice systems possess such basis [25–28]. Usually frustration, higher-rank symmetry, or 
higher-order terms in the Hamiltonian create an obstacle towards it. Fortunately, it is possible to 
overcome them for some frustrated spin ladder systems [29,30], as well as in one-dimension for 
several spin systems with higher symmetries [31,34,32,33,35]. The SU(N) and SO(N) open spin 
chains in defining representation have the same nonpositive basis. It is obtained by equipping the 
standard basis, composed from the single spins, with the sign factor

θa1...aL
= (−1){#(i<j)|ai>aj }, (8)

which counts the number of all inversely ordered pairs of flavors and returns its parity [32,35]:

|a1 . . . aL〉 = θa1...aL
|a1 . . . aL〉. (9)

It was defined in terms of fermions by Affleck and Lieb and used the proof of uniqueness of the 
ground state of SU(2N) spin chain [31]. Later it was applied for fermion chains with various 
symmetries [26,36,37,33]. The above form of the basis has been applied for the extension of 
Lieb–Mattis theorem for the SU(N) spin chain [32]. Recently, it has been used in Monte Carlo
simulation of SU(N) [38] and SO(N) [35] spin chains.

The sign θa1...aL
alters under the permutation of two distinct neighboring flavors since they 

are the only pair which changes the order: θ...ab... = −θ...ba... [32]. From the other side, it remains 
unchanged if two adjacent equal spins are replaced by another pair, since the inclusion of double 
flavors changes the amount of disordered pairs on even number: θ...aa... = θ...bb... [35]. Therefore, 
the off-diagonal matrix elements of the Hamiltonian (1), (2) are nonpositive in the basis (9).
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3. Lowest-level states in σ -subspaces

We partition the entire space of states VL into 2N−1 subspaces, characterized by the distinct 
sets of the reflection quantum numbers (5) constrained by (7):

V L
σ1...σN

= {ψ | σ̂aψ = σaψ}. (10)

We call them σ -subspaces, following a similar definition for Sz = M eigenspaces [24]. The 
Hamiltonian (1) remains invariant in any σ -subspace, its matrix is connected there in the ba-
sis (9).

In order to verify the last claim, denote by N± the amount of the plus and minus indexes the 
subspace (10), so that N+ + N− = N . According to the restriction (7),

(−1)N− = (−1)L. (11)

Arrange all flavors with odd Na in ascending order:

a−
1 < · · · < a−

N− , σa−
i

= −1. (12)

Then the Hamiltonian connects any basic state of V L
σ1...σN

to the state

|1 . . .1︸ ︷︷ ︸
L−N−

a−
1 . . . a−

N−〉.

Indeed, acting by the first term in (1), one can rearrange the flavors in non-descending order. 
Then using the second term, one can replace any adjacent pair aa with the pair 11. The second 
rearrangement gives the desired state.

According to the Perron–Frobenius theorem [39], the lowest-energy state in the subspace (10)
is nondegenerate and a positive superposition of the basic states (9) from the subspace (10):

�σ1...σN
=

∑
(−1)

Nai =σai

ωa1...aL
|a1 . . . aL〉 (13)

with

ωa1...aL
> 0.

In order to detect the multiplet containing the relative ground state, we chose a trial state. Fill 
the first N− sites by the antisymmetric combination of the flavors with odd numbers (12). The 
number of remaining sites of the chain is even due to (11). Divide them into neighboring pairs, 
fill each pair with the same flavor, then take the sum over all flavors. As a result, we arrive at the 
state


 =
∑

s∈SN−

εs1...sN− |a−
s1

. . . a−
sN− 〉 ⊗ ψ ⊗ · · · ⊗ ψ︸ ︷︷ ︸

k

=
∑

s∈SN−

∑
b1...bk

|a−
s1 . . . a−

sN− b1b1b2b2 . . . bkbk〉 (14)

with

ψ =
∑

|bb〉 and k = 1
2 (L − N−).
b
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The first sum performs the antisymmetrization over all flavors with σa = −1 using the Levi-
Civita symbol. The constructed state is a positive superposition of certain states from (9), because 
the insertion of a neighboring particle pair with same flavor does not change the sign factor 
in (9). Therefore, it has a nonzero overlap with the relative ground state (13). Since the ψ state 
is a scalar, the trial state belongs to (N−)-th order antisymmetric multiplet (tensor), which is 
described by the one-column Young tableau of the same length [40],

YN− =Y[1,1, . . . ,1︸ ︷︷ ︸
N−

]. (15)

Remember now that the nonequivalent multiplets are mutually orthogonal. The nondegeneracy 
of the relative ground state implies that it must belong to a certain multiplet. The latter must be 
characterized by the same Young tableau (15) due to the orthogonality condition of nonequivalent 
multiplets.

In contrast to the Hamiltonian, the orthogonal symmetry mixes different σ -subspaces. Con-
sider the symmetric group of permutations between different flavors, SN ⊂ O(N). It permutes 
the reflection operators and the indexes of the σ -subspace:

sσ̂as
−1 = σ̂s(a), sV L

σ1...σN
= V L

σs(1)...σs(N)
,

where s ∈ SN . Due to the symmetry, the Hamiltonian has the same spectrum on all σ -subspaces, 
which have the same number of negative indexes. We unify them into the 

(
N
N−

)
-fold degenerate 

subspace

VL
N− = V L−· · ·−︸ ︷︷ ︸

N−

+ · · ·+︸ ︷︷ ︸
N+

⊕ V L−· · ·−︸ ︷︷ ︸
N−−1

+−+· · ·+︸ ︷︷ ︸
N+−1

⊕

. . . . . . ⊕ V L+· · ·+︸ ︷︷ ︸
N+

− · · ·−︸ ︷︷ ︸
N−

. (16)

Thus, the relative ground state in the subspace VL
N− is a unique (N−)-th order antisymmetric 

O(N) tensor. It gathers the relative ground states of all σ -subspaces from (16).
The entire space of states represents the sum of these degenerate subspaces:

VL =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

VL
N ⊕ VL

N−2 ⊕ . . . ⊕ VL
0 even N,L,

VL
N ⊕ VL

N−2 ⊕ . . . ⊕ VL
1 odd N,L,

VL
N−1 ⊕ VL

N−3 ⊕ . . . ⊕ VL
1 even N , odd L,

VL
N−1 ⊕ VL

N−3 ⊕ . . . ⊕ VL
0 odd N , even L.

(17)

It must be mentioned that the subspace VL
N− is not empty if N− ≤ L. So we suppose in the 

following that the chain length is large enough, L ≥ N .
The total ground state may be, at most, 2N−1-fold degenerate combining the lowest-level 

multiplets from all subspaces VL
k in the decomposition (17).

According to the representation theory of orthogonal algebras [40], two multiplets, described 
by the Young diagrams YN± , are mutually conjugate and related by the Levi-Civita symbol 
εa1...aN

. The conjugate multiplets are distinguished by the sign under improper rotations, which 
maps tensor to pseudotensor. For example, Y0 is a scalar (singlet) while YN ∼ Y

′
0 is a pseu-

doscalar; Y1 is a vector while YN−1 ∼ Y
′
1 is a pseudovector, etc. In particular, the lowest level 

state is a scalar in the subspace VL and a pseudoscalar in VL . As SO(N) representations, they 
0 N
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are equivalent, and the smallest number from the set N± characterizes the multiplet. According 
to (17), the distribution on k of the lowest-level multiplets in VL

k depends sharply on the parity 
of N . In an odd case, the tensors and pseudotensors alternate each other with the growth of k, 
while in an even case, both type multiplets appear together. The self-conjugate representation 
YN/2 emerges only once for N being a multiple of 4.

Now turn back to the another Z×(N−1)
2 symmetry, formed by the π -rotations in the 

(
N
2

)
coor-

dinate planes,

σ̂aσ̂b = eiπL̂ab

.

The σ -subspaces are the eigenspaces of its elements corresponding to the quantum numbers 
σaσb. They remain unchanged under the simultaneous change of all signs σa → −σa and, there-
fore, do not distinguish between conjugate representations YN± . For example, both the scalar and 
pseudoscalar are labeled by the plus signs. For odd N , the elements of this group parameterize 
uniquely the σ -subspaces, since due to the condition (11) among the two subspaces V L

σ1...σN
and 

V L−σ1...−σN
, only one exists for a given chain. In contrast, for even N , both subspaces present or 

absent simultaneously and belong to the subspaces VL
N∓ respectively. An additional Z2 quantum 

number σ1 separates them.

4. SO(3) case

Consider the simplest case of SO(3) chain and express the bilinear–biquadratic Hamiltonian 
(3) through the standard spin-one operators:

H =
∑

l

(
Jl Sl+1 · Sl + K ′

l (Sl+1 · Sl )
2), (18)

with Sa
l = −εabcLbc

l and K ′
l < Jl . According to the general case (16), the σ -subspaces are unified 

into four degenerate subspaces,

VL
0 = V L+++, VL

2 = V L+−− ⊕ V L−+− ⊕ V L−−+,

VL
3 = V L−−−, VL

1 = V L++− ⊕ V L+−+ ⊕ V L−++, (19)

so that the first or second lines happen, respectively, for the chains with even or odd lengths. 
Following (17), the entire space of states can be expressed in terms of them as follows:

VL =
{
VL

2 ⊕ VL
0 for even L,

VL
3 ⊕ VL

1 for odd L.
(20)

Applying the previously obtained results for N = 3 case, we conclude that the lowest-energy 
states in the subspaces VL

0 and VL
3 are spin-singlets, which behave as a scalar and pseudo-scalar, 

correspondingly, under improper rotations. In the subspaces VL
1 and VL

2 they form spin-triplets 
with vector and pseudo-vector behavior. All these multiplets are nondegenerate.

The total ground state is either a unique spin-singlet, or a unique spin-triplet, or their su-
perposition. The first opportunity happens for K ′

l ≤ 0 [25], and the last one takes place at the 
AKLT point K ′

l = 1
3Jl . So, it may be at most fourfold degenerate as was established already by 

Kennedy in Ref. [18]. He used another partition and another negative basis. The latter is obtained 
from the usual Ising basis by a nonlocal unitary shift locally equivalent to the KT transformation. 
Its relation with the basis (9) has been studied in detail recently [35].
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5. Exact VBS case

The coupling values K ′
l = 1

N
Jl describe the chain with the exact 2N−1-fold degenerate VBS 

ground state [15,22]. The couplings can be made site-dependent since the ground state mini-
mizes apart all local interactions. The spinor representation of the orthogonal group has been 
used in order to obtain the explicit expression of the ground-state [14,15,22] in the matrix 
product form [41]. Here we adopt the construction to the open chain and show that the parity-
transformation symmetry Z×(N−1)

2 is broken completely.
Define 2n-dimensional gamma matrices with n = [N

2 ], which generate the Clifford algebra

{�a,�b} = 2δab.

The spinor representation of SO(N) is given by

Lab = − i
2 [�a,�b].

The rotation R in the flavor space induces the unitary transformation of spinors:

UR�aU+
R =

∑
b

Rab�
b. (21)

The ground state is presented in the matrix product form [14],

�αβ ∼
∑

a1,a2,...,aL

(�a1�a2 . . . �aL)αβ |a1a2 . . . aL〉, (22)

where α, β are 2n-dimensional spinor indexes. The trace gives rise to the translationally invariant 
ground state [15]. As a result, the ground state transforms under rotations as

� → UR�U+
R ,

and, hence, belongs to the tensor product of the spinor representation � and its dual �∗ (which 
are equivalent). Its Clebsch–Gordan decomposition depends on whether N is even or odd.

For O(2n), it reads [19]:

� ⊗ �∗ =
N⊕

k=0

Yk =
n−1⊕
k=0

(Yk ⊕Y
′
k) ⊕Yn. (23)

The spinor representation (21) expands to the O(2n) representation by σ̂a = �a�0. Here

�0 = ın
N∏

a=1

�a,

where ı is 1 or i according as n is even or odd. The multiplets Yk and Y′
k are formed by the 

components of the rank k antisymmetric tensor,

�
b1...bk

Yk
= Tr(��[b1 . . . �bk]), k ≤ n, (24)

�
b1...bk

Y
′
k

= Tr(��0�[b1 . . . �bk]), k < n, (25)

where the antisymmetrization is performed over the indexes in square brackets. Since the trace of 
a product of odd number of gamma matrices vanishes, only the states obeying (11) survive in the 
sum (22). This reduces the number of nonvanishing matrix elements of �αβ from 2N to 2N−1, 
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as was also mentioned in Ref. [35]. The trace of a product of even number of gamma matrices is 
expressed in terms of the Kronecker delta products, which vanish unless their indexes coincide 
pairwise. Each index bi from the trace decomposition in (24) will be paired by δbiaj with any 
index aj from (22). The antisymmetrization eliminates the pairings between the indexes bi . As 
a result, we obtain a combination of states with k distinct flavors b1, . . . , bk and L − k flavors 
partitioned into the singlets ψ from (14). Therefore, the ground state

�
b1...bk

Yk
= �Yk

belongs to the subspace VL
k defined in (16). Moreover, the 2N−1-fold degenerate ground state 

splits into them in complete agreement with the decomposition (17) for even N :

� =
{⊕n

i=0 �Y2i
= �Y0 ⊕ �Y

′
0
⊕ �Y2 ⊕ �Y

′
2
⊕ . . .⊕n

i=1 �Y2i−1 = �Y1 ⊕ �Y
′
1
⊕ �Y3 ⊕ �Y

′
3
⊕ . . . ,

where the first and second lines correspond, respectively, to even and odd values of L. The 
parity-transformation symmetry is fully broken. In contrast, the π -rotation symmetry is broken 
partially [15], up to the mutually conjugate multiplets. So, like for the σ -subspaces, one needs in 
a single Z2 reflection in order to separate the tensors from pseudotensors and get a fully broken 
symmetry.

For O(2n + 1), the Clebsch–Gordan decomposition is [19]

� ⊗ �∗ =
n⊕

i=0

Y2i =Y0 ⊕Y
′
1 ⊕Y2 ⊕Y

′
3 ⊕ . . . , (26)

where the second sum concludes with Yn or Y′
n, respectively, for even or odd n. Now �0 com-

mutes with �a and is a number. A product with nonzero trace exists for any number (≥ N ) of 
gamma matrices. The simultaneous flip in the sign of all flavors now is an improper rotation 
acting by


 → (−1)L


on all states (7), including the ground state (22). This modifies the decomposition (26) for odd-
length chains:

� =
{⊕n

i=0 �Y2i
= �Y0 ⊕ �Y

′
1
⊕ �Y3 ⊕ . . . even L,⊕n

i=0 �Y
′
2i

= �Y
′
0
⊕ �Y1 ⊕ �Y

′
3
⊕ . . . odd L.

This sum corresponds to the superposition of the lowest-level multiplets inherited from the 
decomposition (17) for odd N . The SO(N) decomposition is obtained upon the substitution 
Y

′
k = Yk in both sums [22]. Like the π -rotation symmetry [15], the parity-transformation sym-

metry is broken completely.
The AKLT Hamiltonian corresponds to the O(3) symmetric spin-1 chain (18) at K ′

l = 1
3Jl [2]. 

The fourfold degenerate ground state splits into singlet and triplet states. For the even L, they are 
lowest-energy states of V3

0 and V3
2 and represented by a scalar and pseudovector, respectively. 

For the odd L, they are lowest-energy states of V3
1 and V3

3 and represented by a vector and 
pseudoscalar, respectively.
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6. Conclusion

In the current article, the properties of the lowest-energy states of the SO(N) bilinear-
biquadratic spin chain with L spins and open boundaries are studied for wide range of couplings. 
We consider the reflections with respect to each flavor (parity transformations), which generate 
the Z×(N−1)

2 group, expanding the symmetry to O(N). It splits the entire space of states into the 
2N−1 subspaces Vσ1...σN

, each characterized by the set of N reflection quantum numbers σa = ±, 
subjected to the condition (7).

For wide range of parameters it is proven that the lowest-level state in any such σ -subspace is 
nondegenerate. Moreover, the lowest states from all subspaces Vσ1...σN

with k negative indexes 
form k-th order antisymmetric tensor, or O(N) multiplet. In particular, the relative ground state 
is a scalar and pseudoscalar, respectively, in the subspaces with positive (V++···+) and negative 
(V−−···−) signs.

As a result, the entire ground state may be, at most, 2N−1-fold degenerate. The maximal 
degeneracy appears at the point with the exact valence-bond solid (VBS) ground state, where 
the Z×(N−1)

2 symmetry is broken completely to 2N−1 degenerate vacua, described by the rela-
tive ground states from all σ -subspaces. The even–odd effect both on the group rank and chain 
length is observed. For even N , the degenerate ground state is formed by k-th order tensor and 
pseudotensor multiplets. For odd N , tensor and pseudotensor multiplets alternate each other: 
k-th order tensor precedes the (k + 1)-th order pseudotensor. In both cases, the parity of k has 
to coincide with the parity of the chain length L. In particular, the ground state of the usual 
spin-1 bilinear–biquadratic chain with even number of spins is the superposition of a scalar and 
a pseudovector, while for odd-site chain it combines a pseudoscalar and a vector.

Out of the VBS point, the degeneracy between the different multiplets is removed. However, 
any such multiplet still combines all lowest-level states from the σ -subspace with the same set of 
reflection quantum numbers σa . This property sheds light on the origin of the broken Z×(N−1)

symmetry at the VBS point.
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