The journal is published since 1925, since 1967 – periodically (3 numbers in year).

EDITORIAL BOARD

DANIELYAN E.A. (editor), KIRAKOSYAN A.A. (deputy editor),
SHARAMBEYAN L.T. (executive secretary)

ALAVERDYAN R.B., AVAGYAN R.M., DUMANYAN V.Zh., GEVORGYAN G.G.,
HAJYAN G.S., HAKOPIAN Yu.R., KHACHATRYAN I.G., MOVSISYAN Yu.M,
NERKARARYAN Kh.V., NIGIYAN S.A., PETROSYAN A.I., SARGSYAN S.V.,
SHOUKOURIAN S.K., VARDANYAN V.I., VARTANYAN Yu.L.

Yerevan State University Press

© Proceedings of the Yerevan State University,
Physical and Mathematical Sciences, 2010

© Երևանի Համալսարանի արտահայտություն,
Ֆիզիկա-մաթեմատիկական գիտություններ, 2010

Signed to print at 26.01.2010

Format 70×100 1/16. Printed paper 4,5.
Circulation 100.

Editorial address: 1, Alex Manoogian str., 0025, Yerevan, Republic of Armenia

www.ysu.am
CONTENTS

MATHEMATICS

G.V. Mikaelyan, Z.S. Mikaelyan. Weierstrass and Blaschke type functions 3
A.V. Sargsyan. On factorization of a class of second order matrix-functions 9
Siavash Ghorbanian. Boundary value problem for the pseudoparabolic equations .. 16
L.P. Tepoyan, Daryoush Kalvand. Neumann problem for fourth order degenerate ordinary differential equations ... 22
Kh.L. Vardanyan. Regression models generated by distributions of moderate growth.. 27

MECHANICS

R. Sharifian. Buckling of isotropic plates with two opposite simply supported edges and the other two edges rotationally restrained unloaded ... 32

INFORMATICS

A.H. Arakelyan. On the type correctness of polymorphic λ-terms. 2.................. 37

PHYSICS

A.L. Mkhitaryan. Vacuum fluctuations in cosmological models with compactified dimensions.. 47
A.S. Zeytunyan. Bandwidth and duration of nonlinear-dispersive similariton........... 54
COMMUNICATIONS

H.G. Hovhannisyan. Effective estimates for model generated by distribution of moderate growth .. 58

A.A. Chubaryan, H.R. Bolibekyan. On the Rabin’s speed-up of proofs for some systems of first order logic .. 61

H.K. Gevorgyan. A combined effect of electrostatic field and hydrostatic pressure on the stability of bilayer lipid membranes ... 64

Annotation in Armenian .. 67

Annotation in Russian ... 70
WEIERSTRASS AND BLASCHKE TYPE FUNCTIONS

G. V. MIKAELYAN*, Z. S. MIKAELYAN

Chair of Theory of Functions, YSU

In the present paper the Weierstrass multipliers are generalized and the theorem of convergence of corresponding infinite products is proved. Representations of Blaschke type functions are established through Weierstrass type functions and Blaschke function. A way construction of new Blaschke type products is shown, and a method of proof of their convergence is developed. Some relations between Blaschke type products are established.

Keywords: infinite products, Weierstrass products, Blaschke and Djrbashyan type products.

1. The Weierstrass and Blaschke type infinite products play an important role in the theory of classes factorization of functions, meromorphic in various domains. In [1] it is shown, that quite wide classes of such products have identical structure. Let $D = \{ z : |z| < 1 \}$ be a unit disc, and $G = \{ z : \text{Im} z < 0 \}$ be the bottom half-plane. Denote

$$b_0^{(1)}(z,\zeta) = \frac{\zeta - z}{1 - \zeta z}, \quad z,\zeta \in D;$$
$$b_0^{(2)}(z,\zeta) = b_0^{(3)}(z,\zeta) = \frac{z - \zeta}{z - \zeta}, \quad z,\zeta \in G.$$

In [1] it is established, that for elementary factors $b_0^{(l)} = b_0^{(l)}(z,\zeta)$ ($l=1,2,3$) of Blaschke–Djrbashyan type infinite products, where $\alpha \in (-1, +\infty)$, the following integral representations are true:

$$b_0^{(1)}(z,\zeta) = \exp \left\{ \frac{\beta_0^{(1)}}{t} \int (1-t)^{\alpha} \frac{dt}{t} \right\}, \quad z,\zeta \in D,$$
$$b_0^{(2)}(z,\zeta) = b_0^{(3)}(z,\zeta), \quad z,\zeta \in D,$$
$$b_0^{(1)}(z,\zeta) = \exp \left\{ \frac{\beta_0^{(1)}}{t} \int (1+t)^{-\alpha} \frac{dt}{t} \right\}, \quad z,\zeta \in G.$$

* E-mail: Gagik.Mikaelyan@mail.ru
where integrals are taken along any contours laying inside the disc D and passing through points 1 and $h^{(l)}_0 = h^{(l)}_0(z, \zeta)$ $(l = 1, 2, 3)$, and not passing through the beginning of coordinates at $z \neq \zeta$.

In [2], [3] it is proved, that if the sequence of complex numbers $Z = \{z_n\}^\infty_{n=1} \subset D$ satisfies the condition

$$\sum_{n=1}^\infty (1-|z_n|)^{1+\alpha} < +\infty, \quad \alpha \in (-1, +\infty),$$

then the infinite product

$$B^{(l)}_{\alpha}(z, \{z_n\}) = \prod_{n=1}^\infty b^{(l)}_{\alpha}(z, z_n)$$

converges absolutely and uniformly inside D and represents an analytical function with zeros Z.

In [4], [5] and [6] it is proved, that if the sequence of complex numbers $Z = \{z_n\}^\infty_{n=1} \subset G$ satisfies the condition

$$\sum_{n=1}^\infty (\text{Im} \ z_n)^{1+\alpha} < +\infty, \quad \alpha \in (-1, +\infty),$$

then the infinite product

$$B^{(l)}_{\alpha}(z, \{z_n\}) = \prod_{n=1}^\infty b^{(l)}_{\alpha}(z, z_n) \quad (l = 2, 3)$$

converges absolutely and uniformly inside G and represents an analytical function with zeros Z. In [1] the following way of construction of new Blaschke–Djrbashyan type functions is shown. Denote by Φ a class of analytic functions inside the unit disc D, for which $\varphi(0) = 1$, and the integrals $\int_1^z \frac{\varphi(t)}{t} \, dt$, $0 < |z| < 1$, taken along contours, laying inside the disc D, connecting the points 1 and z and not passing through zero, converge. For $\varphi \in \Phi$ introduce the functions

$$b^{(l)}_{\varphi}(z, \zeta) = \exp \left\{ \int_1^z \frac{\varphi(t)}{t} \, dt \right\} \quad (l = 1, 2),$$

where $z, \zeta \in D$ when $l = 1$, and $z, \zeta \in G$ when $l = 2$, connecting the points 1 and $h^{(l)}_0 = h^{(l)}_0(z, \zeta)$ $(l = 1, 2, 3)$ and not passing through zero at $z \neq \zeta$. Obviously, in (8) instead of functions $h^{(l)}_0(z, \zeta)$ one may take other functions, analytic in D or G.

2. The function

$$E(z, q) = \begin{cases} 1 - z, & q = 0, \\ (1 - z) e^{z^2 + \cdots + \frac{z^4}{q}}, & q \geq 1. \end{cases}$$

is called the Weierstrass primary multiplier. Let $\alpha = \{\alpha_k\}^\infty_{k=1}$ be a sequence of complex numbers, and the series $\sum_{k=1}^\infty \frac{\alpha_k}{k} z^k$ converges at $|z| < \infty$. Consider the entire function
$$E_\alpha(z) = (1-z)\exp\left\{\sum_{k=1}^\infty \frac{\alpha_k}{k} z^k \right\}.$$

If $\alpha_k = 1$ for $k = 1, 2, \ldots, q$, and $\alpha_k = 0$ for $k = q+1, q+2, \ldots$, then $E_\alpha(z) = E(z, q)$.

Theorem 1. Let $k = q \geq 1$ be the least integer, at which α_k is not equal to 1 and the sequence α is bounded: $|\alpha_k| \leq M, k = 1, 2, \ldots$ Then

1) at $|z| < \frac{1}{2}$ the inequality $|\log E_\alpha(z)| \leq 2M |z|^{q+1}$ holds;

2) if for the sequence $Z = \{z_n\}_1^n$ of complex numbers the series $\sum_{n=1}^\infty |z_n|^{-q-1}$ converges, then the infinite product

$$\prod_{n=1}^\infty E_\alpha\left(\frac{z}{z_n}\right)$$

in each bounded part of the plane, the zeros of which coincide with Z, converges absolutely and uniformly to an entire function.

Proof. We assume that $|z| < 1 - \frac{1}{2(q+1)}$. Then

$$|\log E_\alpha(z)| = \sum_{k=q+1}^\infty \frac{\alpha_k}{k} z^k \leq \frac{\sum_{k=q+1}^\infty |\alpha_k| |z|^k}{q+1} \leq \frac{M |z|^{q+1}}{q+1-|z|} \leq 2M |z|^{q+1}.$$

Since $1 - \frac{1}{2(q+1)} \geq \frac{1}{2}$, the statement 1) of Theorem 1 is proved.

For the proof of the statement 2) note that at $|z| < \frac{1}{2} r < \frac{1}{2} |z_n|$ the following inequalities are valid: $|\log E_\alpha\left(\frac{z}{z_n}\right)| < 2M \frac{|z|^{q+1}}{z_n} < \frac{Mr^{q+1}}{2^q |z_n|^{q+1}}$. Therefore, a series

$$\sum_{n=1}^\infty \log E_\alpha\left(\frac{z}{z_n}\right)$$

converges uniformly in $|z| < \frac{1}{2} r$, if n_0 is large enough, and, therefore, the product (9) converges absolutely and uniformly.

3. Let $\varphi \in \Phi$ and $\varphi(t) = 1 + \sum_{n=1}^\infty \beta_n t^n$, $|t| < r \ (r > 1)$.

Theorem 2. Functions $b^{(l)}_p(z, \zeta)$, $l = 1, 2$, can be represented as

$$b^{(l)}_p(z, \zeta) = E_\alpha(1-b^{(l)}_p(z, \zeta))$$

where $\alpha_k = (-1)^k \sum_{n=k}^\infty \beta_n C_{n-1}^{k-1}$, $C_m = \frac{n(n-1)\cdots(n-m+1)}{m!}$.

Proof. For $|t| < r-1$ we have

$$\frac{\varphi(t) - 1}{t} = \sum_{n=1}^\infty \beta_n t^{n-1} = \sum_{n=1}^\infty \beta_n (1-(1-t))^{n-1} = \sum_{n=0}^\infty \beta_n \sum_{k=0}^n C_n^k (-1)^k (1-t)^k =$$
Applying term by term integration over the contours, laying inside the disc \(D \) and connecting the points 1 and \(z (|z| < r-1) \), we obtain

\[
E_o (1 - z) = z \exp \left\{ \sum_{k=1}^{\infty} \frac{\alpha_{k+1}}{k+1} (1-z)^k \right\} = z \exp \left\{ \int_1^t \frac{\varphi(t)-1}{t} \, dt \right\} = \exp \left\{ \int_1^t \frac{\varphi(t)-1}{t} \, dt \right\} \quad (10)
\]

Thus, if \(|z| < r-1 \), then

\[
(1-z) = -1 + \sum_{n=1}^{\infty} \frac{\beta_n}{n} t^n, \quad |t| < 1. \quad (11)
\]

where the limit \(\beta_0 = -\lim_{r \to 1} \sum_{n=1}^{\infty} \frac{\beta_n}{n} t^n \) exists due to the definition of class \(\Phi \).

Example 2. Let \(\alpha > -1 \) be any real number and \(\varphi(t) = (1-t)^\alpha \). Then

\[
(1-t)^\alpha = 1 + \sum_{n=1}^{\infty} \beta_n^{(1)} (\alpha) t^n, \quad \beta_n^{(1)} (\alpha) = (-1)^n \frac{\alpha (\alpha-1) \cdots (\alpha-n+1)}{n!} \quad (n \geq 1).
\]

Note that \(\beta_n^{(1)} (\alpha) \geq 0 \) for \(-1 < \alpha \leq 0\), and \(\beta_n^{(1)} (\alpha) \leq 0 \) for \(0 < \alpha \leq 1 \).

Example 3. Let \(\alpha > -1 \) be any real number and \(\varphi(t) = \left(\frac{1-t}{1+t} \right)^\alpha \). Then

\[
\left(\frac{1-t}{1+t} \right)^\alpha = 1 + \sum_{n=1}^{\infty} \beta_n^{(2)} (\alpha) t^n, \quad \beta_n^{(2)} (\alpha) = -2\alpha,
\]
\[
\beta^{(2)}_n(\alpha) = \frac{(-1)^n}{n} \left(\sum_{k=1}^{n-1} C_k^n \alpha(\alpha-1) \cdots (\alpha-k+1) \alpha(\alpha+1) \cdots (\alpha+n-k-1) + \alpha(\alpha-1) \cdots (\alpha-n+1) \alpha(\alpha+1) \cdots (\alpha+n-1) \right), \quad n \geq 2.
\]

There holds also the recurrent formula
\[
\beta^{(2)}_n(\alpha) = ((1)^n - 1) \frac{\alpha(\alpha+1) \cdots (\alpha+n-1)}{n!} \sum_{k=1}^{n-1} \frac{\alpha(\alpha+1) \cdots (\alpha+k-1)}{k!} \beta^{(2)}_{n-k} \quad (n \geq 2).
\]

Note that \(\beta^{(2)}_n(\alpha) \geq 0 \) for \(-1 < \alpha \leq 0\), and \(\text{sgn} \beta^{(2)}_n(\alpha) = (-1)^n \) for \(0 < \alpha \leq 1\), \(n \geq 1\).

From the following obvious inequalities
\[
\sum_{n=1}^{\infty} \left| \frac{\beta^{(2)}_n}{n} \right| \left| \text{Re}(b^{(l)}_n(z,\zeta)) \right|^n \leq \sum_{n=1}^{\infty} \left| \frac{\beta^{(2)}_n}{n} \right| \left| b^{(l)}_n(z,\zeta) \right|^n \leq \lim_{t \to 0+} \sum_{n=1}^{\infty} \left| \frac{\beta^{(2)}_n}{t^n} \right|
\]
and formulas (7) we obtain
\[
\left| b^{(l)}_n(z,\zeta) \right| \leq \left| b^{(l)}_0(z,\zeta) \right| \quad \text{when} \quad \beta^{(2)}_n \geq 0 \quad (n \geq 1),
\]
\[
\left| b^{(l)}_n(z,\zeta) \right| \geq \left| b^{(l)}_0(z,\zeta) \right| \quad \text{when} \quad \beta^{(2)}_n < 0 \quad (n \geq 1).
\]

Particularly, due to (1), (2), (3) the following inequalities hold:
\[
\left| b^{(l)}_n(z,\zeta) \right| \leq \left| b^{(l)}_0(z,\zeta) \right| \quad \text{when} \quad -1 < \alpha \leq 0 \quad (l = 1, 2, 3),
\]
\[
\left| b^{(l)}_n(z,\zeta) \right| \geq \left| b^{(l)}_0(z,\zeta) \right| \quad \text{when} \quad 0 < \alpha \leq 1 \quad (l = 1, 3).
\]

The inequality (12) in case \(l = 2 \) is established in [5] with the help of other method.

If \(\left| 1 - b^{(l)}_0(z,\zeta) \right| < 1 \), then writing the functions \(b^{(l)}_0 = b^{(l)}_0(z,\zeta) \) in the form
\[
b^{(l)}_0(z,\zeta) = \exp \left\{ \int_0^{[1-b^{(l)}_0]} \varphi(1 + re^{\vartheta}) \text{e}^{i\vartheta} \, dr \right\}, \quad \text{where} \quad \vartheta = \arg(b^{(l)}_0) - 1,
\]
we obtain the inequalities
\[
\left| \log b^{(l)}_0(z,\zeta) \right| \leq \frac{1}{1 - \left| 1 - b^{(l)}_0 \right|} \left| \int_0^{1-b^{(l)}_0} \varphi(1 + re^{\vartheta}) \, dr \right| \quad (l = 1, 2).
\]

Assume that \(\left| \varphi(t) \right| = O(\left| t \right|^\rho) \) with \(\rho > 0 \) holds for \(t \to 1, \left| t \right| < 1 \). Then, due to (13) the inequality holds
\[
\left| \log b^{(l)}_0(z,\zeta) \right| \leq O(1) \frac{\left| 1 - b^{(l)}_0(z,\zeta) \right|^{1+\rho}}{1 - \left| 1 - b^{(l)}_0 \right|} \quad (14).
\]

For \(\zeta \in D, \left| \zeta \right| \leq R < 1 \) we have
\[
\left| 1 - b^{(l)}_0(z,\zeta) \right| = \frac{1 - \left| \zeta \right|^2}{1 - \left| \zeta \right|^2} \leq \frac{2}{1 - R} \left(1 - \left| \zeta \right| \right);
\]
for \(\zeta \in G, \ \text{Im} \ z \leq -\rho < 0 \) we have
\[
\left| 1 - b^{(l)}_0(z,\zeta) \right| = \frac{2\left| \text{Im} \ z \right|}{\left| \zeta - \zeta \right|^2} \leq \frac{2}{\rho} \left| \text{Im} \ z \right|.
\]
From inequalities (14), (15), (16) the convergence conditions (4), (6) of infinite products (5), (7) follow immediately.

Example 4. The case of analytic function \(\varphi \) with singularity in a point \(z = 1 \) is of interest. Let \(\varphi(t) = e^{it} = e^{e^{it}} \), \(t \in D \). From (13), (16) in the case \(z, \zeta \in G \),

\[
|\text{Im} z| \geq \rho > 0, \quad |\text{Im} \zeta| \leq \frac{\rho}{3}
\]

we get the following estimation:

\[
\left| \log b^{(2)}_\varphi(z, \zeta) \right| \leq 3e \left| \int_0^{\frac{\pi}{2}} e^{-r} \, dr \right| \leq 3 \left| b^{(2)}_\varphi(z, \zeta) - \exp \left(1 + \frac{\text{Re}(b^{(2)}_\varphi(z, \zeta) - 1)}{\rho} \right) \right|
\]

\[
\leq \frac{6\sqrt{e}}{\rho} \text{Im} \zeta \exp \left(-\frac{1}{2} \frac{|\text{Im} z|}{|\text{Im} \zeta|} \right).
\]

Thus, if for the sequence \(\{z_n\}_n \subset G \left(\lim_{n \to \infty} \text{Im} z_n = 0 \right) \) for any \(\rho > 0 \) holds

\[
\sum_{n=1}^\infty e^{-\frac{\rho}{|\text{Im} z_n|}} < +\infty,
\]

then the infinite product \(B^{(2)}_\varphi(z, \{z_n\}) = \prod_{n=1}^\infty \exp \left\{ \frac{b^{(2)}_\varphi(z, z_n)}{n} \right\} \) converges absolutely and uniformly in any half-plane \(\{z : \text{Im} z < -\rho\} \), and represents functions analytic in half-planes \(G \) with zeros \(\{z_n\}_n \). For example, if \(|\text{Im} z_n| = \frac{1}{\log^2 n} \), then the condition (17) holds, but none of conditions (6) is satisfied.

Received 09.09.2009

REFERENCES
The paper suggests a factorization construction method for a class of second order matrix-functions. The left lower element of these matrix-functions may be represented as combinations of other three elements of matrix-function and two functions, meromorphic respectively in interior and exterior regions of the unit disk.

Keywords: factorization, matrix-function, partial indices.

1°. We denote by \(W \) the Wiener algebra of continuous functions defined on the unit circle \(\Gamma \) and representable as absolutely convergent Fourier series. By \(W^{n \times m} \) we denote the set of all those matrix-functions (MF) of order \(n \times m \), the components of which belong to \(W \). For short we use standard notations \(W^n \) and \(W \) instead of \(W^{n \times 1} \) and \(W^{1 \times 1} \).

Let \(\langle f \rangle_k = \frac{1}{2\pi i} \int f(z) z^{-k-1} \, dz \) be the Fourier coefficients of \(f \in W^{n \times m} \). We define by equalities

\[
(P_j f)(t) = \sum_{k=-\infty}^{j-1} \langle f \rangle_k t^k, \quad (P_j^* f)(t) = \sum_{k=j}^{\infty} \langle f \rangle_k t^k
\]

projections \(P_j \) (\(j \in \mathbb{Z} \)) acting in \(W^{n \times m} \).

Consider the following spaces: \(W^{n \times m}_r = \text{Im} P_0 \), \(W^{n \times m}_c = \text{Im} P_1 \), \(W^{n \times m} = \text{Im} P_0 \). Under factorization of a MF \(G \in W^{2 \times 2} \) in \(W \) we understand its representation in the form \(G = G_1 A G_2 \), where \(G_1, G_1^{-1} \in W^{2 \times 2}_r \), \(G_2, G_2^{-1} \in W^{2 \times 2}_c \), \(A(t) = \text{diag}(t^{i \chi_1}, t^{i \chi_2}) \), \(t \in \Gamma \), \(\chi_1, \chi_2 \in \mathbb{Z} \) and \(\chi_1 \leq \chi_2 \). The numbers \(\chi_1, \chi_2 \) are called partial indices of the MF \(G \). Constructive methods for building factorizations are known only for narrow classes of matrix-functions (see, e.g., [1–6]).

* E-mail: ann-sargsyan@yandex.ru
Let $G_{11}, G_{12}, G_{22}, h_1, h_2 \in W$. We assume that there exist some polynomials p_- and q_-, (deg $q_- = \nu_-$, deg $q_+ = n_-$), whose roots lie correspondingly in Γ'_- and Γ'_+, and there exists a non-negative integer N $(N \geq n_-)$, such that \(p_- = \frac{q_- h_1}{\tau^N} \in W_- \), \(p_+ = q_- h_2 \in W_+ \), where $\tau(t) = t$ $(t \in \Gamma)$.

A class of second order matrix-functions, defined on the unit circle $\Gamma = \{z \in \mathbb{C} ; |z| = 1\}$ of a form

$$G = \begin{pmatrix} G_{11} & G_{12} \\ h_1 G_{11} + h_2 G_{22} - h_2 G_{12} & h_2 G_{12} \end{pmatrix}$$

(1)

under assumption that h_1, h_2 are meromorphic functions correspondingly in domains $\Gamma'_- = \{z \in \mathbb{C} ; |z| > 1\}$ and $\Gamma'_+ = \{z \in \mathbb{C} ; |z| < 1\}$, is considered in [7]. In [7] we obtained some explicit formulas for the partial indices of MF of the form (1). In the present paper for this class of matrix-functions we suggest a constructive method of recovering factors G_{12}. The matrix-function factorization problem (1) is reduced to a successive factorization of two scalar functions and to the solution of explicit finite systems of linear equations.

2°. We assume below that

$$q_-(0) \neq 0.$$ (2)

This assumption is not essential by the following reason. If $q_-(0) = 0$ and $\alpha \in \Gamma'_+$ are such that $q_-(\alpha) \neq 0$, then it is not difficult to verify, that MF $G_{12} = G \circ \zeta$, where $\zeta(z) = (z + \alpha)/(1 + \overline{\alpha}z)$, also has structure of (1), if one replaces q_- with $\hat{q}_-(t) = (1 + \overline{\alpha}t)^{-n_-} q_-(\zeta(t))$. One can easily see, that $q_-(0) = q_-(\alpha) \neq 0$.

Besides, since ζ maps Γ'_- into Γ'_+, then factorization of MF G in a simple way is restored by factorization of G_{12}.

3°. We consider functions

$$V_i = \tau^N (q_- G_{11} - p_+ G_{12})/(q_- q_-), \quad V_2 = \tau^N (\tau^{-N} q_+ G_{22} - p_- G_{12})/(q_- q_-).$$

(3)

Further, we assume that the following conditions are satisfied

$$V_i(t) \neq 0 \quad (t \in \Gamma).$$ (4)

Factorization of MF G exists, if and only if conditions (4) are satisfied (see [7]).

Assume that $\chi_i = \text{ind} V_i = \frac{1}{2\pi} \text{vararg} V_i(t)\mid_{t \in \Gamma}$, $i = 1, 2$, $\chi_0 = \max \{\chi_1, \chi_2\}$, \(\nu_- = N_+ (\chi_1 - \chi_2) \),

$$V_i^\pm = \exp P_0^\pm (\ln(t^{\chi_i} V_i)), \quad i = 1, 2, \quad V_{12}^\pm = V_{12}^\pm \exp P_0^\pm \left(\frac{\tau^{N-\chi_1} G_{12}}{V_1^{\pm} V_2^{\pm} q_- q_-} \right),$$

(5)

$$V_2 = \begin{pmatrix} V_1^+ & V_{12}^+ \\ 0 & V_2^+ \end{pmatrix}.$$ (6)
The MF $G_0 = \tau_Z G$ allows representation $G_0 = AB$ (see [7]), where

$$A = \begin{pmatrix} q_+ & 0 \\ \tau & 1 \end{pmatrix} \begin{pmatrix} \tau^{-x_0} & 0 \\ 0 & \tau^{x_0} \end{pmatrix} V, \quad B = V_s \begin{pmatrix} 1 & 0 \\ p_+ & q_- \end{pmatrix}.$$

For $j \in \mathbb{Z}$ we denote $\hat{j} = \frac{1}{2}(j + |j|)$, $\hat{j} = \frac{1}{2}(j - |j|)$. We define also a MF $U = \tau^{-x_0} P_v (B^{-1}) P_v^*(A^{-1})$ and B_j, A_j ($j > -\nu_-$, $\hat{j} + \nu_+ > 1$), U_j, K_j ($j > -\nu_-$) by following formulas:

$$B_j = \begin{pmatrix} \langle B^{-1} \rangle_{-1-j} & \langle B^{-1} \rangle_{-2-j} & \cdots & \langle B^{-1} \rangle_{-\nu_+ - j} \\
\vdots & \ddots & \ddots & \vdots \\
\langle B^{-1} \rangle_{-\nu_-} & \langle B^{-1} \rangle_{-\nu_- - 1} & \cdots & \langle B^{-1} \rangle_{(\nu_+ + \nu_-) - 1-j} \\
0 & \langle B^{-1} \rangle_{-\nu_- - 1} & \cdots & \langle B^{-1} \rangle_{1-j} \\
0 & 0 & \cdots & \cdots \\
0 & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\end{pmatrix},$$

(7)

$$A_j = \begin{pmatrix} \langle U \rangle_{-1-j} & \langle U \rangle_{-2-j} & \cdots & \langle U \rangle_{-\nu_+ - j} \\
\vdots & \ddots & \ddots & \vdots \\
\langle U \rangle_{-\nu_-} & \langle U \rangle_{-\nu_- - 1} & \cdots & \langle U \rangle_{1-j} \\
0 & \langle U \rangle_{-\nu_- - 1} & \cdots & \langle U \rangle_{1-j} \\
0 & 0 & \cdots & \cdots \\
0 & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\end{pmatrix},$$

(8)

$$U_j = \begin{pmatrix} \langle U \rangle_{-1-j} & \langle U \rangle_{-2-j} & \cdots & \langle U \rangle_{-\nu_+ - j} \\
\vdots & \ddots & \ddots & \vdots \\
\langle U \rangle_{-\nu_-} & \langle U \rangle_{-\nu_- - 1} & \cdots & \langle U \rangle_{1-j} \\
0 & \langle U \rangle_{-\nu_- - 1} & \cdots & \langle U \rangle_{1-j} \\
0 & 0 & \cdots & \cdots \\
0 & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\end{pmatrix},$$

(9)

$$K_j = U_j + B_j A_j, \text{ for } \nu_+ + \hat{j} > 1, \quad K_j = U_j \text{ for } \nu_+ + \hat{j} = 1.$$

(10)

Results of [7] imply, that partial indices of MF G_0 are equal to $-\nu_+ + \nu_0$ and $\nu_+ - \nu_0$, where $\nu_0 = \text{card} \{ j ; r_j = 2\theta_j + r_{j-1}, j = -\nu_+ + 1, \ldots, \nu_+ \}$. Here $\nu_+ = \nu_-$, $r_j = \text{rang} K_j$ for $j > -\nu_-$ (particularly, $r_\nu_+ = \nu_+$), $\theta_j = 1$ when $j > 0$, and $\theta_j = 0$ when $j < 0$, $j \in \mathbb{Z}$. We denote $\xi_1 = -\nu_+ + \nu_0 + 1$, $\xi_2 = \nu_+ - \nu_0 + 1$.

4°. We denote by L_j ($j < 0$) the space of vector-polynomials of z^{-1} of the form $\sum_{k=j}^{\xi_1} \varphi_k z^k$, where $\varphi_k \in \mathbb{C}^2$. For $j = 0$ we assume that $L_0 = \{0\}$. Let $\mathbb{C}^{2n} = \mathbb{C}^2 \times \mathbb{C}^2 \times \cdots \times \mathbb{C}^2$. We define operators $\Psi_j : \mathbb{C}^{2(\nu_+ + 1)} \to L_{-(\nu_+ + \hat{j})}$ for $j = -\nu_+ + 1, \ldots, \xi_2$.

$$\Psi_j q = \sum_{k = (\nu_+ + \hat{j})}^{\xi_2} q_k t^k, \text{ where } q = \left[q_{-(\nu_+ + \hat{j})} \cdots q_{-1} \right], \quad q_k \in \mathbb{C}^2 \quad (k = -(\nu_+ + \hat{j}) \ldots, \xi_2).$$
We define the families of Hankel operators $H_j^* : \mathcal{W}^2_+ \to \mathcal{W}^2_+ \quad (j \in \mathbb{Z})$ and Toeplitz operators $T_j : \mathcal{W}^2_+ \to \mathcal{W}^2_+ \quad (j \in \mathbb{Z})$ by formula

$$H_j^* \varphi = P_0^* \left(\tau^j (A^{-1} \varphi) \right), \quad H_j^+ \varphi = P_0^* \left(\tau^j (B^{-1} \varphi) \right), \quad T_j \varphi = P_0^* \left(\tau^j G_0 \varphi \right).$$

Reasoning by analogy to the proof of Proposition 3 in [7], one can verify that for $j > -\nu$, the kernels of finite-dimensional operators $K_j = H_j^* H_j \big|_{\mathcal{N}_j}$ are connected with kernels K_j by relations: $\ker K_j = \mathcal{N}_j \ker K_j$. The Lemma in [7] implies

$$N_j = \ker \mathcal{T}_j = \left\{ \tau^j B^{-1} P_0^* \left(\tau^j A^{-1} \mathcal{N}_j \varphi \right) : q \in \ker K_j \right\}, \quad j > -\nu. \quad (11)$$

The Toeplitz operators T_j may be defined (by the same formula) on wider spaces $\mathcal{L}_2^* = P_0^* (\mathcal{L}_2(\Gamma))$. Note that in this case kernels $N_j = \ker \mathcal{T}_j$ are not extendable. Indeed, since $G_0 \in \mathcal{W}^{2+2}$, then its any factorization in \mathcal{L}_2 is a factorization in W (see [2]). And since any solution $T_j \varphi = 0$ in \mathcal{L}_2^* has the form $G_0^{-1} p$, where p is a polynomial, then φ belongs also to \mathcal{W}^2_+.

Along with the spaces $N_j \quad (j \in \mathbb{Z})$ we consider also hereditary spaces $N_j = N_j + \tau N_j = \left\{ \varphi + \tau \psi : \varphi, \psi \in N_j \right\}$. Taking into account the abovementioned remark, it is easy to see that $N_j \subset N_{j+1}, \quad j \in \mathbb{Z}$. The direct complement M_j of the space N_j in N_{j+1} is called $(2, j)_+$-index subspace of MF G_0. It is known (see [8]) that $N_j = \{0\}$ for $j \leq \xi_1 - 1$, and $N_j = N_{j-1}$ for all $j \in Z \setminus \{\xi_1, \xi_2\}$. Besides, the following statement is true.

Proposition 1. If $\xi_1 \neq \xi_2$, then spaces $M_{\xi_1-1}, \quad M_{\xi_2-1}$ are one-dimensional, and if $\xi_1 = \xi_2$, then the unique nonzero $(2, j)_+$-index subspace M_{ξ_1-1} is two-dimensional.

Proof. Since MF G_0 allows factorization in the sense of the Section 1°, then it allows factorization in the space \mathcal{L}_2 (see [5]), and, therefore, it has a finite $(r_*, 2)$-indexation (see [9], Theorem 4). Besides, the $(r_*, 2)$-partial indices coincide with $\xi_1 - 1, \quad \xi_2 - 1$. Consequently, due to Theorem 5 in [8], $\dim M_{\xi_1-1} + \dim M_{\xi_2-1} = 2$, if $\xi_1 \neq \xi_2$, and $\dim M_{\xi_1-1} = 2$, if $\xi_1 = \xi_2$. Taking into account that $\dim M_{\xi_1-1} \quad (i = 1, 2)$ are nonzero spaces (see [9]), we complete the proof of Proposition 1.

We choose vector-functions (VF) φ_1 and φ_2 as follows. Assume, that for $\xi_1 \neq \xi_2$, φ_1 and φ_2 are bases for index subspaces M_{ξ_1-1} and M_{ξ_2-1} respectively, and VFs φ_1 and φ_2 are a basis of subspace M_{ξ_1-1} when $\xi_1 = \xi_2$.

We define $G_{+1}^{-1} = [\varphi_1, \varphi_2]$ (i.e. columns of MF G_{+1}^{-1} are formed with VFs φ_1 and φ_2), $A_0 = \text{diag}([\delta_1^{-1}, \delta_2^{-1}])$ and $G_0 = G_{+1} G_{+1}^{-1} A_0$, then the following statement is true.

Proposition 2. The representation $G_0 = G A_0 G_+$ is a factorization of MF G_0.

Proof. G_0 has a finite $(r_+, 2)$-indexation with $(r_+, 2)$-partial indices $\xi_1 - 1$, $\xi_2 - 1$, and, therefore, due to Theorem 2 from [9], the representation $G_0 = G A_0 G_+$ is a $(r_+, 2)$-index factorization. It follows from Theorem 4 [9], that G_0 is a factorization in L_2 as well. Since $G \in W^{2\times 2}$, then a factorization in L_2 coincides with factorization in W, i.e. with factorization in the sense of the Section 1 (see [2]). The proof is thus completed.

5°. We introduce the spaces $N_j(0) = \{\varphi(0); \varphi \in N_j\}$, $M_j(0) = \{\varphi(0); \varphi \in M_j\}$. Obviously, $N_j(0) = N_{j+1}(0)$, $N_j(0) = \{0\}$ when $j \leq \xi_j - 1$, and $M_j(0) = \{0\}$ when $j \notin \{\xi_j - 1, \xi_{j+1} - 1\}$. Let $\xi_j \neq \xi_{j+1}$. Since $\det G_k^{-1}(0) = 0$, then Propositions 1 and 2 imply $\dim M_{\xi_j - 1}(0) = \dim M_{\xi_{j+1} - 1}(0) = 1$ and $M_{\xi_j - 1}(0) + M_{\xi_{j+1} - 1}(0) = C^2$. Hence, taking into account the equalities $N_j(0) \cap M_j(0) = \{0\}$, $N_{j+1}(0) = N_j(0) + M_j(0)$, $j \in Z$ (see [8]), we get $N_j(0) = \cdots = N_{\xi_j - 1}(0) = M_{\xi_{j+1} - 1}(0)$ and $N_j = C^2$ for $j \geq \xi_j$. For $\xi_j = \xi_{j+1}$ we have $\dim M_{\xi_j - 1}(0) = 2$, and for $j \geq \xi_{j+1}$ we get $N_j = C^2$.

6°. For $j \in Z$, satisfying the inequality $\nu_+ + j \geq 1$, we define matrices K'_j by formula $K'_j = \begin{pmatrix} A^{-1} & \cdots & A^{-1} \end{pmatrix}$. Vectors $\vec{\varphi}_1 \in C^{2(\nu_+ + j)}$, $\vec{\varphi}_2 \in C^{2(\nu_+ + j)}$ are called a factorization pair for the MF G, if $\vec{\varphi}_i \in \ker K'_{\xi_i}$ $(i = 1, 2)$, and vectors $K'_{\xi_j} \vec{\varphi}_1$, $K'_{\xi_{j+1}} \vec{\varphi}_2$ are nonzero and linearly independent. Obviously, the existence of factorization pair $\vec{\varphi}_1$, $\vec{\varphi}_2$ is equivalent to the existence of nonzero linearly independent vectors $y_1, y_2 \in C^2$, such that

$$
\begin{pmatrix} K'_{\xi_j} & 0 \\ K'_{\xi_{j+1}} & -E_2 \end{pmatrix} \begin{pmatrix} \vec{\varphi}_1 \\ \vec{\varphi}_2 \end{pmatrix} = 0, \quad i = 1, 2,
$$

(12)

where E_2 is a unity matrix.

Proposition 3. MF G possesses a factorization pair.

Proof. Assume that $\nu_+ + j > 0$ and $\varphi \in N_j$. Due to (11) there exists $\vec{q} = [q_{-(\nu_+ + j)} \cdots q_{-1}] \in \ker K_j$ $(q_s \in C^2, \quad s = -(\nu_+ + j), \ldots, j - 1)$, such that $\varphi(t) = t^j B^{-1}(t)P_0^+ \left(t^j A^{-1} \Psi' \vec{q} \right)$. Using equality $(\Psi' \vec{q})(t) = \sum_{k=-(\nu_+ + j)}^\infty q_k t^k$, one can verify that
\[\varphi(t) = B^{-1}(t) \sum_{m=0}^{\infty} \left(\sum_{k=-m+j}^{m-1} \left(A^{-1} \right)_{m-k,j} q_k \right) t^{m+j}. \] (13)

\(B(0) \) is an invertible matrix, and hence \(N_j(0) = \{ B^{-1}(0)K_j \Phi; \Phi \in \ker K_j \} \).

Now the existence of the factorization pair follows from the properties of spaces \(N_j(0) \) (see Section 5). Proposition is thus proved. Note also that in the neighborhood of \(z = 0 \) the function \(B(z) \varphi(z) \) is analytical, and, therefore,

\[\sum_{k=-m+j}^{m-1} \left(A^{-1} \right)_{m-k,j} q_k = 0, \quad m = 0, 1, \ldots, j - 1. \] (14)

7. The main result of the present paper is the following

Theorem. Let \(q_1, q_2 \) be a factorization pair for \(G, \chi_i = \xi_i + \chi_i \),

\[\varphi_i = t_{\chi_i} B^{-1}(t) \Lambda \Psi \xi_i, \quad i = 1, 2, \] (15)

\[G_{-1} = \{\varphi_1, \varphi_2\}, \quad \Lambda(t) = \text{diag}[t^{\xi_1}, t^{\xi_2}], \quad G_{-1} = GG_{-1}A^{-1}. \]

Then the representation \(G = G^{-1}AG_{-1} \) is a factorization of \(MG \).

Proof. It follows from the definition of factorization pair that \(K_i q_i = 0 \) \((i = 1, 2)\). Due to (11), VFs \(\varphi_j \), defined by the equality (15), belong to spaces \(N_{\xi_i} \).

We consider first the case \(\xi_1 \neq \xi_2 \). Since \(K'_{\xi_i} \Phi \) and \(K'_{\xi_i} \Phi \) are linearly independent and \(\det B(0) \neq 0 \), then \(\varphi_1(0) \) and \(\varphi_2(0) \) are linearly independent as well. Therefore, VFs \(\varphi_1, \varphi_2 \) are also linearly independent. We have \(N_{\xi_i} = M_{\xi_i-1} \), and hence \(\varphi_1, \varphi_2 \) form a basis of \(M_{\xi_i-1} \), and the proof of Theorem follows from Proposition 2.

Assume now \(\xi_1 = \xi_2 \), \(\varphi_1(0) \neq 0 \), i.e. \(\varphi_1 \neq 0 \), since \(\det B(0) \neq 0 \) and \(K'_{\xi_i} \Phi \neq 0 \). Further, \(M_{\xi_i-1} = N_{\xi_i} \) is an one-dimensional space, and, therefore, \(\varphi_1 \) is the basis of this space. Since \(K'_{\xi_i} \Phi \) and \(K'_{\xi_i} \Phi \) are linearly independent, then vectors \(\varphi_1(0), \varphi_2(0) \) are also linearly independent. Taking into account that \(N_{\xi_i-1}(0) = N_{\xi_i}(0) = \text{span}\{\varphi_1(0)\} \), we obtain that \(\varphi_2(0) \notin N_{\xi_i-1}(0) = N_{\xi_i}(0) \). Thus, \(\varphi_2 \notin N_{\xi_i} \), but \(\varphi_2 \notin N_{\xi_i-1} \), i.e. \(\varphi_2 \) belongs to some subspace \(M_{\xi_i-1} \). It remains to apply the Proposition 2.

Theorem is thus proved.

Basing on the Theorem proved above we suggest the following scheme of constructing a factorization of the MF \(G \):

1. Constructing MF \(V_{\xi_i} \) according to (5), (6).
2. Constructing matrices \(K_j \) \((j = -\nu_+, ..., \nu_+ \) according to (7)–(10).
3. Determining numbers \(r_j = \text{rang} K_j \) \((j = -\nu_+, ..., \nu_+ \), \(r_{\nu_+} = \nu_+, \nu_0, \xi_i, \chi_i \), \(i = 1, 2 \).
4. Constructing a factorization pair according to (12).
5. Recovering the factorization of the MF \(G \) by means of formulas (15).

Received 02.12.2009
REFERENCES

BOUNDARY VALUE PROBLEM FOR THE PSEUDOPARABOLIC EQUATIONS

SIAVASH GHORBANIAN*
Azad-University of Firizku, Iran

In the present paper the boundary value problem for the Sobolev type equation

\[
\begin{aligned}
\left\{ \begin{array}{l}
\frac{\partial}{\partial t} L(u(t,x)) + M(u(t,x)) = f(t,x), \quad t > 0, \quad x = (x_1, \ldots, x_n) \in \Omega \subset \mathbb{R}^n, \\
\frac{\partial}{\partial \nu} u = 0, \quad x \in \partial \Omega, \\
(Lu)(0,x) = g(x), \quad x \in \Omega,
\end{array}
\right.
\end{aligned}
\]

is considered, where \(L\) and \(M\) are second-order differential operators. It is proved that under some conditions this problem in the corresponding space has the unique solution.

Keywords: Sobolev type equations, pseudoparabolic equations, monotone and radial operators.

1. Let \(\Omega \subset \mathbb{R}^n\) be a bounded domain with the smooth boundary \(\Gamma\). We consider the following boundary value problem:

\[
\begin{aligned}
\left\{ \begin{array}{l}
\frac{\partial}{\partial t} L(u(t,x)) + M(u(t,x)) = f(t,x), \quad t > 0, \quad x = (x_1, \ldots, x_n) \in \Omega \subset \mathbb{R}^n, \\
\frac{\partial}{\partial \nu} u = 0, \quad x \in \partial \Omega, \\
(Lu)(0,x) = g(x), \quad x \in \Omega,
\end{array}
\right.
\end{aligned}
\]

where \(L(u) = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(b_{ij}(t,x) \frac{\partial u}{\partial x_j} \right), \) \(M(u) = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right), \)

\(f(t,x) \in L_2((0,T); W^{-1}_2(\Omega)), g(x) \in W^{-1}_2(\Omega).\)

We suppose that the functions \(b_{ij}(t,x)\) and \(a_{ij}(t,x)\) \((i, j = 1, 2, \ldots, n)\) are defined in \([0,T] \times \overline{\Omega}\), \(b_{ij}(t,x) = b_{ij}(t,x), a_{ij}(t,x) = a_{ij}(t,x)\) \((i, j = 1, 2, \ldots, n)\) and

* E-mail: siavash-ghorbanian@yahoo.com
for every \(t \in [0, T] \) and \(x \in \Omega \) the following quadratic form is positively defined:

\[
\sum_{i,j=1}^{n} b_{ij}(t,x) \xi_i \xi_j \geq c_0 |\xi|^2,
\]

where \(\xi = (\xi_1, \ldots, \xi_n) \), \(c_0 = \text{const} > 0 \).

The case of the problem (1)–(3) with \(u_{|t=0} = g(x) \), instead of (3) (first boundary value problem), has been considered by R.A. Aleksandrian [1], G.S. Hakobyan, R.L. Shakhbaghyan [2], Kh. Gaevskii, K. Greger, K. Zakharis [3], R.E. Showalter [4], H.A. Mamikonyan [5] etc.

In this paper we study a new boundary value problem.

For the fixed \(t \in [0, T] \) we define mappings \(L(t) \) and \(M(t) \) from \(W^1_2(\Omega) \) to \(W^{-1}_2(\Omega) \) by formulas

\[
\langle L(t)v, w \rangle = \sum_{i,j=1}^{n} \int_{\Omega} b_{ij}(t,x) \frac{\partial v}{\partial x_i} \frac{\partial w}{\partial x_j} \, dx,
\]

\[
\langle M(t)v, w \rangle = \sum_{i,j=1}^{n} \int_{\Omega} a_{ij}(t,x) \frac{\partial v}{\partial x_i} \frac{\partial w}{\partial x_j} \, dx,
\]

where \(v \in W^1_2(\Omega) \) and \(w \in W^{-1}_2(\Omega) \). It is easy to see that for \(\forall v \in W^1_2(\Omega) \) formulas (5) and (6) define linear bounded functionals \(L(t)v \) and \(M(t)v \), which belong to \(W^{-1}_2(\Omega) \). At the same time differential expressions \(L(u) \) and \(M(u) \) generate operators \((Lu)(t) = L(t)u(t,x) \) and \((Mu)(t) = M(t)u(t,x) \) that map \(L_2\left(0,T;W^1_2(\Omega)\right) \) into \(L_2\left(0,T;W^{-1}_2(\Omega)\right) \).

Let’s give some definitions (see [3, 4]). Let \(X \) be a real, reflexive Banach space.

Definition 1. The operator \(A : X \to X^* \) is called

- radially continuous, if for \(\forall x, y \in X \) the function \(\varphi(s) = \langle A(x + sy), y \rangle \) is continuous in \([0,1]\);
- Lipschitz-continuous, if there exists a positive constant \(M \) such that
 \[
 \|Ax - Ay\| \leq M \|x - y\| \quad \text{for} \ \forall x, y \in X;
 \]
- monotone, if \(\langle Ax - Ay, x - y \rangle \geq 0 \) for \(\forall x, y \in X \);
- strictly monotone, if there exists a positive constant \(m \) such that
 \[
 \langle Ax - Ay, x - y \rangle \geq m \|x - y\|^2 \quad \text{for} \ \forall x, y \in X.
 \]

Lemma 1. The operators \(L(t), M(t) : W^1_2(\Omega) \to W^{-1}_2(\Omega) = \left(W^1_2(\Omega) \right)^* \) are radially continuous and uniformly bounded with respect to \(t \).
Proof. Indeed, for every functions \(v(x), w(x) \in H^1_\Omega(\Omega) \) we have

\[
\varphi(s) = \langle L(t)(v + sw), w \rangle = \sum_{i,j=1}^n \int_{\Omega} b_{ij}(t,x) \frac{\partial (v + sw)}{\partial x_i} \cdot \frac{\partial w}{\partial x_j} \, dx =
\]

\[
= \sum_{i,j=1}^n \int_{\Omega} b_{ij}(t,x) \frac{\partial v}{\partial x_i} \cdot \frac{\partial w}{\partial x_j} \, dx + s \sum_{i,j=1}^n \int_{\Omega} b_{ij}(t,x) \frac{\partial w}{\partial x_i} \cdot \frac{\partial w}{\partial x_j} \, dx = \langle L(t)v, w \rangle + s \langle L(t)w, w \rangle.
\]

Similarly, we get \(\varphi(s) = \langle M(t)(v + sw), w \rangle = \langle M(t)v, w \rangle + s \langle M(t)w, w \rangle \), hence the functionals \(\varphi(s) \) and \(\psi(s) \) are linear. From the formulas (5) and (6) it follows that

\[
\left| \langle L(t)v, w \rangle \right| \leq \sum_{i,j=1}^n \int_{\Omega} \left| b_{ij}(t,x) \frac{\partial v}{\partial x_i} \cdot \frac{\partial w}{\partial x_j} \right| \, dx \leq c_1 \|v\|_{W^1_\Omega(\Omega)} \|w\|_{W^1_\Omega(\Omega)},
\]

hence we have \(\|L(t)v\| \leq c_1 \|v\|_{W^1_\Omega(\Omega)} \), \(\|M(t)v\| \leq c_1 \|v\|_{W^1_\Omega(\Omega)} \). Now the Lipschitz continuity of the operators \(L(t) \) and \(M(t) \) follows from their linearity.

Lemma 2. The operators \(L(t) \) are uniformly strictly monotone with respect to \(t \).

Proof. From condition (4) it follows that for every \(v(x), w(x) \in \overset{\circ}{H}^1_\Omega(\Omega) \) we have

\[
\left| \langle L(t)v - L(t)w, v - w \rangle \right| = \left| \langle L(t)(v-w), v-w \rangle \right| = \sum_{i,j=1}^n \int_{\Omega} b_{ij}(t,x) \frac{\partial (v-w)}{\partial x_i} \cdot \frac{\partial (v-w)}{\partial x_j} \, dx \geq
\]

\[
\geq c_0 \sum_{i,j=1}^n \int_{\Omega} \frac{\partial (v-w)^2}{\partial x_i} \, dx = c_0 \|v-w\|_{W^1_\Omega(\Omega)}^2.
\]

Definition 2. Let \(X \) and \(Y \) be linear spaces and \(s = [0,T] \). A mapping \(G:L_2([0,T];X) \to L_2([0,T];Y) \) is called Volterra-type, if from the condition \(u(s) = v(s) \) for almost all \(s \in [0,T], t \in S \), it follows that \((Gu)(s) = (Gv)(s) \) for almost all \(s \in [0,T] \). It is evident that the operator \(M \) is of Volterra-type.

From the Lemma 1, Lemma 2 and Lemma 2.2 (see [1]) we get

Theorem 1. The operator \(L:L_2\left(0,T;W^1_\Omega(\Omega)\right) \to L_2\left(0,T;W^1_\Omega(\Omega)\right) \) is radially continuous, strictly monotone, and there exists the inverse operator \(L^{-1} \), which is Lipschitz continuous and

\[
(L^{-1}f)(t) = L^{-1}(t)f(t) \quad \forall t \in [0,T], \forall f \in L_2\left(0,T;W^1_\Omega(\Omega)\right).
\]
Together with the problem (1)–(3), let’s consider the following one
\[
\begin{align*}
 v' + A v &= f, \\
 v(0) &= g,
\end{align*}
\]
where \(A = M L^{-1} : L_2(0,T;W_2^{-1}(\Omega)) \to L_2(0,T;W_2^{-1}(\Omega)) \). Since the operator \(A \) satisfies the conditions of Theorem 1.3 (see [3]), we conclude that the problem (7) has the unique solution. Denote it by \(v \). Then the function \(v = L^{-1} v \) is the solution of the problem (1)–(3). Thus, we can formulate the following (see Theorem 2.4, [3])

Theorem 2. Let the functions \(b_j(t,x) = b_j(t,x), \quad a_{ij}(t,x) = a_{ij}(t,x) \) \((i,j = 1,2,\ldots,n)\) be continuous in the domain \([0,T] \times \Omega\), and condition (4) holds for any \(t \in [0,T] \) and any \(x \in \Omega \). Then the problem (1)–(3) has a unique solution and \(L(u) \in C(0,T;W_2^{-1}(\Omega)) \), \(\frac{\partial}{\partial t}(L(u)) \in L_2(0,T;W_2^{-1}(\Omega)) \).

2. Now we consider the problem (1)–(3) with the assumption that the operators \(L \) and \(M \) are second order nonlinear differential operators:
\[
L(u) = -\sum_{i=1}^{n} \frac{\partial}{\partial x_i}(b_j(t,x,\nabla u)), \quad M(u) = -\sum_{i=1}^{n} \frac{\partial}{\partial x_i}(a_{ij}(t,x,\nabla u)),
\]
where the functions \(b_j(t,x,\xi_1,\ldots,\xi_n), \quad a_{ij}(t,x,\xi_1,\ldots,\xi_n) \) are defined and continuous in \([0,T] \times \Omega \times \mathbb{R}^n\), and have continuous derivatives with respect to \(\xi_j \) \((j = 1,2,\ldots,n)\).

We suppose that the functions \(b_j(t,x,\xi) \) and \(a_{ij}(t,x,\xi) \) \((\xi = (\xi_1,\ldots,\xi_n), \quad i = 1,2,\ldots,n)\) satisfy the conditions:

1) \(|b_j(t,x,\xi)| \leq c_1(1 + \xi^2), \quad c_1 = const > 0, \quad i = 1,2,\ldots,n, \)

2) \(|b_{ij}(t,x,\xi)| \leq c_2, \quad c_2 = const > 0, \quad i,j = 1,2,\ldots,n, \)

3) \(\sum_{i,j=1}^{n} b_{ij}(t,x,\xi) \eta_i \eta_j \geq c_3 |\eta|^2 \quad \forall t \in [0,T], \quad \forall x \in \Omega \quad \forall \eta = (\eta_1,\ldots,\eta_n) \in \mathbb{R}^n, \)

4) \(|a_{ij}(t,x,\xi)| \leq c_4(1 + \xi^2), \quad \left| \frac{\partial a_{ij}(t,x,\xi)}{\partial \xi_j} \right| \leq c_5, \quad i,j = 1,2,\ldots,n. \)

For fixed \(t \in [0,T] \) define the operators \(L(t) \) and \(M(t) \) from \(W_2^1(\Omega) \) to \(W_2^{-1}(\Omega) \) by formulas
\[
\langle L(t)v,w \rangle = -\sum_{i=1}^{n} \int_{\Omega} b_j(t,x,\nabla u) \frac{\partial w}{\partial x_i} \, dx, \quad (7)
\]
\[
\langle M(t)v,w \rangle = -\sum_{i=1}^{n} \int_{\Omega} a_{ij}(t,x,\nabla u) \frac{\partial w}{\partial x_i} \, dx. \quad (8)
\]
Operators $L(t)$ and $M(t)$ ($t \in [0,T]$) generate mappings L and M from $L_2\left(0,T;W^{-1}_2(\Omega)\right)$ to $L_2\left(0,T;W^{-1}_2(\Omega)\right)$ by formulas

$$(Lu)(t) = L(t)(u(t,x)), \quad (Mu)(t) = M(t)(u(t,x)).$$

Lemma 3 ([5]). Let the conditions 1)–3) hold. Then the operator $L(t)$ is radially continuous and strictly monotone.

Proof. For every $s_1, s_2 \in [0,1]$ we have

$$\|\varphi(s_1) - \varphi(s_2)\| = \left\|\left(L(t)(u_1 + s_1 v), v\right) - \left(L(t)(u_2 + s_2 v), v\right)\right\| =
\left\|L(t)(u + s_1 v) - L(t)(u + s_2 v), v\right\| =
\left|\sum_{i=1}^{n} \left[b_i(t,x, \nabla u + s_1 \nabla v + \tau(s_2 - s_1) \nabla v) \frac{\partial v}{\partial \xi_i} \right] \ dx \right| =
\left|\sum_{i=1}^{n} \left[b_i(t,x, \nabla u + s_1 \nabla v) \frac{\partial v}{\partial \xi_i} \right] \ dx \right| \leq C |s_1 - s_2| \int_{\Omega} \frac{v^2}{w^2} \ dx.
$$

thus, the operator $L(t)$ is radially continuous.

Now we prove that the operator $L(t)$ is strictly monotone. Indeed, from the condition 3) we get

$$\frac{\sum_{i=1}^{n} \left[b_i(t,x, \nabla u)_i \right] \frac{\partial (u - v)}{\partial \xi_i} \ dx =
= \sum_{i=1}^{n} \sum_{j=1}^{n} \left[b_{ij}(t,x, \nabla u) \right] \frac{\partial (u - v)}{\partial \xi_i} \ dx \leq C \|u - v\|_{W^{-1}_2(\Omega)}.$$

The proof of Lemma 3 is complete.

It is easy to verify that the operator $M : L_2\left(0,T;W^{-1}_2(\Omega)\right) \rightarrow L_2\left(0,T;W^{-1}_2(\Omega)\right)$ is Lipschitz continuous and of Volterra type. From Lemma 2 and Lemma 2.2 (see [3]) it immediately follows

Lemma 4. The operator $L : L_2\left(0,T;W^{-1}_2(\Omega)\right) \rightarrow L_2\left(0,T;W^{-1}_2(\Omega)\right)$ is radially continuous, strictly monotone, and there exists the inverse operator $L^{-1} : L_2\left(0,T;W^{-1}_2(\Omega)\right) \rightarrow L_2\left(0,T;W^{-1}_2(\Omega)\right)$, whereas $(L^{-1} f)(t) = L^{-1} (t) f(t)$ for $\forall t \in [0,T]$ and $\forall f \in L_2\left(0,T;W^{-1}_2(\Omega)\right)$. From Lemma 4 and Theorem 2.4 (see [3]) it immediately follows.
Theorem 3. Let the functions \(b_i(t, x, \xi) \) and \(a_j(t, x, \xi) \) \((i = 1, 2, \ldots, n)\) satisfy the conditions 1)–4). Then the problem (1)–(3), where the operators \(L \) and \(M \) are defined by formulas (9) and (10), has a unique solution, and

\[
L(u) \in C\left(0, T; W_2^{-1}(\Omega)\right), \quad \frac{\partial}{\partial t} L(u) \in L_2\left(0, T; W_2^{-1}(\Omega)\right).
\]

Received 13.03.2009

REFERENCES

NEUMANN PROBLEM FOR FOURTH ORDER DEGENERATE ORDINARY DIFFERENTIAL EQUATIONS

L. P. TEPOYAN¹, DARYOUS H KALVAND²**

¹ Chair of Differential Equations, YSU
² Azad-University of Karaj, Iran

In the present paper the Neumann problem for the equation

\[Lu = (t^\alpha u')' + au = f, \]

where \(0 \leq \alpha \leq 4, \ t \in [0, b], \ f \in L_2(0, b), \) is considered. Firstly, the weighted Sobolev space \(W^2_\alpha \) and generalized solution for the above-mentioned equation are defined. Then, the existence and uniqueness of the generalized solution is studied, as well as the spectrum and the domain of corresponding operator are described.

Keywords: Neumann problem, weighted Sobolev spaces, generalized solution, spectrum of linear operators.

The Problem Formulation. Consider the Neumann problem for the following ordinary differential equation of the fourth order

\[Lu = (t^\alpha u')' + au = f, \quad (1) \]

where \(0 \leq \alpha \leq 4, \ t \in [0, b], \ f \in L_2(0, b), \ a=\text{const}. \)

Define the weighted Sobolev space \(W^2_\alpha \) and consider behavior of functions from \(W^2_\alpha \) in neighborhood of \(t = 0. \) Then we define the generalized solution to the Neumann problem for the equation (1). Under some conditions on factor \(a \) we have to prove the existence and uniqueness of the generalized solution. Moreover, we have to give a description of the spectrum of operator \(L \) and the operator domain \(D(L). \) Note that the Dirichlet problem for degenerate ordinary differential equations of second and fourth orders have been considered in \([1, 2]\) and for higher orders – in \([3]\).

The Space \(W^2_\alpha. \) Let \(\alpha \geq 0 \) and \(t \) belong to the finite interval \((0, b). \) Consider the set \(W^2_\alpha \) of the functions \(u(t), \) which have generalized derivative of
the second order, such that the following semi-norm \(\|u\| = \left(\int_0^b |u'(t)|^2 \, dt \right)^{\frac{1}{2}} \) is finite.

First note, that for the functions \(u \in W^2_\alpha \) for every \(t_0 \in (0, b] \) there exist finite values \(u(t_0) \) and \(u'(t_0) \) (see [3]). Below we study the behavior of functions \(u(t) \) and \(u'(t) \) in neighborhood of \(t = 0 \).

Proposition 1. For \(u \in W^2_\alpha \) the following inequalities hold:

\[
\left| u(t) \right|^2 \leq (c_1 + c_2 t^{\alpha-a}) \left\| u \right\|^2, \quad \alpha \neq 1, \alpha \neq 3, \tag{2}
\]

\[
\left| u'(t) \right|^2 \leq (c_1 + c_2 t^{\alpha-a}) \left\| u \right\|^2, \quad \alpha \neq 1. \tag{3}
\]

In (2) \(t^{\alpha-a} \) is replaced with \(\ln t \) for \(\alpha = 3, t^{\alpha-a} - \) with \(t^2 \ln t \) for \(\alpha = 1 \). In (3) \(t^{\alpha-a} \) is replaced with \(\ln t \).

The proof is carried out analogously to those in [2] and [4]. Namely we use the representation \(u(t) = u(t_0) + \int_{t_0}^t u'(\tau) d\tau \) and apply the Cauchy inequalities.

From Proposition 1 it follows that for \(0 \leq \alpha < 1 \) (weak degeneration) the values \(u(0) \) and \(u'(0) \) are finite, for \(1 \leq \alpha < 3 \) only \(u(0) \) is finite, while for \(\alpha \geq 3 \) both \(u(0) \) and \(u'(0) \) may turn to infinity. From the inequality (2) for \(0 \leq \alpha < 4 \) we get the inequality

\[
\left\| u \right\|_{L_2(0, b)} \leq c \left\| u \right\|,
\]

i.e. we have the following inclusion

\[
W^2_\alpha \subset L_2(0, b). \tag{5}
\]

Inclusion (5) is true also for \(\alpha = 4 \). Indeed, using Hardy’s inequality (see [5]), we get

\[
\int_0^b \left| u(t) \right|^2 \, dt = \int_0^b \left| u(b) + \int_{t_0}^t u'(\tau) \, d\tau \right|^2 \, dt \leq c \int_0^b \left| u'(t) \right|^2 \, dt,
\]

\[
\int_0^b \left| u'(t) \right|^2 \, dt = \int_0^b \left| u'(t) \right|^2 \, dt \leq (c_1 + c_2) \int_0^b \left| u''(t) \right|^2 \, dt.
\]

Inclusion (5) for \(\alpha > 4 \) doesn’t hold. Indeed, the function \(u(t) = t^\frac{1}{2} \) belongs to \(W^2_\alpha \) for \(\alpha > 4 \), but \(u \notin L_2(0, b) \). Therefore, to remain in frames of \(L_2(0, b) \), we further assume that \(0 \leq \alpha \leq 4 \). Now we can define the following norm in \(W^2_\alpha \):

\[
\left\| u \right\|_{W^2_\alpha}^2 = \int_0^b \left(t^\alpha \left| u''(t) \right|^2 + \left| u'(t) \right|^2 \right) \, dt.
\]

The space \(W^2_\alpha \) is a Hilbert space with scalar product \((u, v)_\alpha = (t^\alpha u'(t), v'(t)) + (u, v) \), where \((\cdot, \cdot) \) stands for the scalar product in \(L_2(0, b) \).

Obviously, for \(0 \leq \alpha \leq 4 \) we have the following inequality
Proposition 2. The inclusion (4) for $0 \leq \alpha < 4$ is compact.
Indeed, using inequality (3) we get
\[
\|u(t + h) - u(t)\|_{L^2(0, b)} \leq \frac{h}{2} \|u''(t)\|_{L^2(0, b)} \leq \frac{h}{2} \int_0^1 \left(\sqrt{c_1 + c_2 t^{\frac{1-\alpha}{2}}} \right)^2 dt \|v\|_{W^2_{\alpha}}^2 \leq \left(c_2 \|v\|^2_{W^2_{\alpha}} + 2c_2 \int_0^1 (t + h)^{\frac{3-\alpha}{2}} - t^{\frac{3-\alpha}{2}} dt \right) \|v\|_{W^2_{\alpha}}^2 \leq c \|v\|_{W^2_{\alpha}}^2,
\]
i.e. we have the following inequality: $\|u(t + h) - u(t)\|_{L^2(0, b)} \leq c \|v\|_{W^2_{\alpha}}^2$.

The result now follows from the pre-compactness criterion in $L^2(0, b)$. Note also that for $\alpha = 4$ the continuous inclusion (5) is not compact (see [1]).

The Neumann Problem.

Definition 1. The function $u \in W^2_\alpha$ is called the generalized solution to Neumann problem for equation (1), if for every $v \in W^2_\alpha$ we have the equality
\[
(f^\alpha u'', v) + a(u, v) = (f, v).
\]

Note that, if the generalized solution $u \in W^2_\alpha$ is classical, then for $\alpha = 0$ we get the following conditions (see [6]): $u''(0) = u''(b) = 0$. Consider the particular case of the equation (1) when $a = 1$.

\[
Bu \equiv \left(\psi u' \right)'' + u = f.
\]

Proposition 3. For every $f \in L^2(0, b)$ the generalized solution of Neumann problem for equation (9) exists and is unique.

Proof. Uniqueness of the generalized solution of equation (9) immediately follows from equality (8) (with $a = 1$), if we put $f = 0$ and $v = u$. To prove the existence define the functional $I_f(v) = (f, v), f \in L^2(0, b)$, over the space W^2_α.

Using the inequality (7) we get
\[
\left| I_f(v) \right|^2 \leq \frac{h}{2} \int_0^1 \left(\sqrt{c_1 + c_2 t^{\frac{1-\alpha}{2}}} \right)^2 dt \|v\|_{W^2_{\alpha}}^2 \leq \frac{h}{2} \int_0^1 \left(\sqrt{c_1 + c_2 t^{\frac{1-\alpha}{2}}} \right)^2 dt \|v\|_{W^2_{\alpha}}^2 \leq c \|v\|_{W^2_{\alpha}}^2,
\]
i.e. $I_f(v)$ is a linear continuous functional over the space W^2_α. Using Riesz lemma on representation we get $I_f(v) = (u_0, v)_\alpha, u_0 \in W^2_\alpha$. Therefore, the function u_0 is the generalized solution to equation (9) (see [1]).

Define the operator $B : L^2(0, b) \to L^2(0, b)$ corresponding to Definition 1.
Definition 2. We say that the function \(u \in W^2_0 \) belongs to the domain \(D(B) \) of operator \(B \), if there exists \(f \in L_2(0,b) \) such that the equality (7) is valid. In this case we write \(Bu = f \).

Theorem 1. The operator \(B : L_2(0,b) \to L_2(0,b) \) is positive and self-adjoint. The bounded operator \(B^{-1} : L_2(0,b) \to L_2(0,b) \) for \(0 \leq \alpha < 4 \) is compact.

Proof. The symmetry and positivity of operator \(B \) is a direct consequence of Definition 2. The coincidence of \(D(B) \) and \(D(B^*) \) (\(B^* \) is the adjoint to operator \(B \)) follows from the existence of a generalized solution of (9) for every \(f \in L_2(0,b) \) (see Proposition 3). Note that Definition 2 implies the inequality \(\|Bu\|_2 \leq c \|f\|_{L_2(0,b)} \). Compactness of the operator \(B^{-1} \) for \(0 \leq \alpha < 4 \) now follows from the Proposition 2.

Corollary. For \(0 \leq \alpha < 4 \) the operator \(B \) has discrete spectrum, and its eigenfunction system is complete in \(f \in L_2(0,b) \) (see [7]).

Note that now we can rewrite the equation (1) in the form \(Bu = (1 - \alpha)u + f \), i.e. we can refer the number \(1 - \alpha \) as a spectral parameter.

Theorem 2. The domain of operator \(L \) consists of functions \(u(t) \) for which \(u(0) \) is finite when \(0 \leq \alpha < 7/2 \) and \(u'(0) \) is finite for \(0 \leq \alpha < 2 \). The values \(u(0) \) and \(u'(0) \) can not be specified arbitrarily, but are determined by the right-hand side of (1).

Proof. Since \(D(L) = D(L - \alpha I) \), it is sufficient to study the properties of Neumann problem for equation

\[
\left(t^\alpha u' \right)' = f. \tag{10}
\]

Let \(1 \leq \alpha < 2 \). The derivative of the general solution to equation (10) has the following form:

\[
u'(t) = c_1 + c_2 t^{-2\alpha} + \int_0^t (t - \eta) f(\eta) d\eta d\tau.
\]

We have \(\left| \int_0^t (t - \eta) f(\eta) d\eta d\tau \right| \leq ct^{2-\alpha} \|f\|_{L_2(0,b)} \).

For \(\alpha \geq 2 \) the value \(u'(0) \), generally speaking, can be infinite. Now assume \(3 \leq \alpha < 7/2 \). Then we can write the solution in the following form:

\[
u(t) = c_3 + c_4 t - \int_0^b \int_0^\eta (\eta - \xi) f(\xi) d\xi d\eta d\tau.
\]

Then we have

\[
\left| \int_0^b \int_0^\eta (\eta - \xi) f(\xi) d\xi d\eta d\tau \right| \leq c \left| t^{2-\alpha} - \left(\frac{7}{2} - \alpha \right) \right|^{2-\alpha} \|f\|_{L_2(0,b)}
\]

which completes the proof.

Received 22.06.2009
REFERENCES

REGRESSION MODELS GENERATED BY DISTRIBUTIONS OF MODERATE GROWTH

Kh. L. VARDANYAN∗

Chair of Probability Theory and Mathematical Statistics, YSU

Regression model generated by two-parametric distribution of moderate growth and arising in bioinformatics is considered. Consistency (in a weak sense) of least square estimates for parameters is proved. Distributions of least square estimates for parameters and of Gaussian noise variation estimate are obtained. Results may be used for statistical hypothesis testing with regard to parameters of model.

Keywords: consistent least square estimate, regression model, distribution of moderate growth.

§ 1. Introduction. Two-parametric distribution of moderate growth is introduced in [1]. It takes the following form

\[
P_n(\alpha) = p_0(\alpha) \prod_{m=0}^{n-1} \left(1 + \frac{c-1}{\psi_m} \right), \quad n = 1, 2, \ldots,
\]

\[
p_0(\alpha) = \left\{ 1 + \sum_{m=1}^{\infty} \prod_{n=0}^{m-1} \left(1 + \frac{c-1}{\psi_m} \right)^{-1} \right\}^{-1}
\]

with parametric set \(\{\alpha = (c, \theta): 0 < c < +\infty, 0 < \theta \leq 1\} \). The moderate growth of distribution \(\{p_n(\alpha)\}_{n=0}^{\infty} \). (1.1) is defined by conditions on sequence \(\{\psi_m\}_{m=1}^{\infty} \):

\(\psi_0 = 1, \{\psi_m\}_{m=1}^{\infty} \) is non-decreasing, \(\lim_{n \to +\infty} \psi_m = +\infty, \lim_{n \to +\infty} \psi_m(\psi_m - 1) = 1 \)

under the constraint

\[
S_\psi = \sum_{n=1}^{\infty} (\psi_n) < +\infty.
\] (1.2)

Below \(N(a, \sigma^2) \) denotes the Gaussian distribution function with mean \(a \) and variance \(\sigma^2 \).

In [2] the following regression model generated by model (1.1)–(1.2) is considered. We take logarithm from both sides of (1.1) and replace \(\ln \left(1 + \frac{c-1}{\psi_m} \right) \) by \((c-1)/\psi_m \) (so called linearization). Then, denoting \(f_n(n) = \eta \cdot n + (c-1)S_\psi(n) \),

∗ E-mail: khcho65@mail.ru
\[\eta = \ln \theta, \quad S_\eta(n) = \sum_{m=0}^{n-1} |Y_m| \quad \text{and} \quad y_n = \ln \left(\frac{P_\alpha}{P_0(\alpha)} \right) + \ln \eta, \] we build the regression model of the form
\[y_n = f_\alpha(n) + \epsilon_n, \quad n = 1, 2, \ldots, N. \] (1.3)

Given the integer \(N \geq 1 \) and the observed sequence \(\{y_n\}_1^N \) one needs to find estimates for unknown parameters \(c \) and \(\eta \) under, for instance, the assumption:
\[\epsilon_n \sim N(0, \sigma^2), \quad n = 1, N, \] are independent Gaussian noises with unknown variation \(\sigma^2 \). So, the estimate of \(\sigma^2 \) is also needed.

Denote \(r_n = c_N \cdot S_N \left(\sum n \cdot S_\eta(n) \right)^2, \quad c_N = \sum n^2, \quad S_N = \sum \left(S_\eta(n) \right)^2 \).

Here and everywhere below in sums limits on \(n \) (from 1 to \(N \)) are omitted for simplicity. In [2] for unbiased least square estimates (LSEs) \(\hat{c}_N \) and \(\hat{\eta}_N \) of parameters \(c \) and \(\eta(= \ln \theta) \) in the model (1.3) the following formulas are found:
\[\hat{c}_N = r_N^{-1} \left(\frac{1}{N} \sum n \cdot y_n \cdot S_\eta(n) - \left(\sum n \cdot S_\eta(n) \right) \right), \quad \hat{\eta}_N = r_N^{-1} \left(\frac{1}{N} \sum n \cdot y_n \cdot S_\eta(n) - \left(\sum n \cdot S_\eta(n) \right) \right). \] (1.4)

In this paper, first of all, based on (1.4) the normality and the consistency in a weak sense of LSEs \(\hat{c}_N \) and \(\hat{\eta}_N \) are established. Next, we consider the estimate
\[\hat{\sigma}^2 = \frac{1}{N-2} \sum e_n^2 \] for variation \(\sigma^2 \), where \(e_n = y_n - f_\alpha(n) \) are so called residuals (remainders) of regression (1.3), and \(f_\alpha(n) = \hat{\eta}_N n + (c_N - 1) S_\eta(n) \), \(n = 1, 2, \ldots, N \), obviously, are LSEs for \(f_\alpha(n) \) (the predicted value of \(f_\alpha(n) \)).

We prove some “good” properties of LSEs \(\sigma^2, \hat{c}_N \) and \(\hat{\eta}_N \).

§ 2. Normality and Consistency.

Theorem 1. The LSEs \(\hat{\eta}_N \) and \(\hat{c}_N \) for \(\eta \) and \(c \) have distribution functions \(N \left(\eta, \frac{\sigma^2}{r_N} \right) \) and \(N \left(c, \frac{\sigma^2}{r_N} \right) \) respectively. They are consistent in a weak sense, i.e. \(\hat{\eta}_N \overset{p}{\rightarrow} \eta \), \(\hat{c}_N \overset{p}{\rightarrow} c \) as \(N \rightarrow +\infty \). Here the sign \(\overset{p}{\rightarrow} \) denotes the convergence in probability.

Proof. Denote \(y = (y_1, \ldots, y_N)^\top, \quad \epsilon = (\epsilon_1, \ldots, \epsilon_N)^\top, \quad \beta = (\eta, c - 1)^\top \), where \(\left(\cdot \right)^\top \) is the symbol of allocation, and present the regression model (1.3) in the following form \(y = X \beta + \epsilon \),
\[X = \begin{bmatrix} 1 \\ \vdots \\ N \end{bmatrix} \begin{bmatrix} S_\eta(1) \\ \vdots \\ S_\eta(n) \end{bmatrix} \] (2.1)

It is well-known (see, for instance [3]), that LSE \(\beta \), minimizing the regression remainders squares sum for (2.1), due to \(\epsilon e = \sum \epsilon_n^2, \quad e = y - X \beta \), takes the form
\[\beta = (X'X)^{-1}X'y. \]

Easily seen that the matrix \(X'X \) takes the form

\[
\begin{bmatrix}
 c_N & x'S_{\nu} \\
 \vdots & \vdots \\
 x'S_{\nu} & S_N
\end{bmatrix}
\]

with \(x = (1, 2, \ldots, N), \ S_{\nu} = (S_{\nu}(1), S_{\nu}(2), \ldots, S_{\nu}(N)) \), where we assume that \(\det(X'X) = r_N \neq 0 \). Then, evaluations lead to the form (2.2) of estimate \(\beta \).

From Gauss–Markov theorem [3] it follows that the estimate \(\beta \) is optimal (in the sense of minimums of variations \(D\hat{\eta}_N \) and \(D\hat{c}_N \)) in the class of linear with respect to \(y \), unbiased estimates for parameter \(\beta \). Taking into account that \(y_n, \ n = 1, N \), has distribution function \(N(f_{\nu}(n), \sigma^2) \), the estimate (2.2) is linear with respect to \(y \), and \(X \) is not random, we conclude that LSEs \(\hat{c}_N \) and \(\hat{\eta}_N \) are Gaussian. Further, from the representation (2.2)

\[\beta = (X'X)^{-1}X' (X\beta + \epsilon) = \beta + (X'X)^{-1}X' \]

it follows \(E\beta = \beta + (X'X)^{-1}X'E\epsilon = \beta \), where \(E \) denotes the sign of mathematical expectation.

So, \(\beta \) is the unbiased estimate for parameter \(\beta \). Let us evaluate the variances \(D\hat{\eta}_N \) and \(D\hat{c}_N \). For this purpose we need in covariance matrix \(V \beta \) of estimate \(\beta \): \(V \beta = E(\beta - E\beta)(\beta - E\beta)' = E\epsilon\epsilon' = \sigma^2 A^2 \), where \(A = (X'X)^{-1}X' \). Since \(A^2 = (X'X)^{-1} \), therefore,

\[V \beta = \sigma^2 (X'X)^{-1}. \]

On the other hand, because of the form

\[(X'X)^{-1} = r_N^{-1} \begin{bmatrix}
 S_N & -(x'S_{\nu}) \\
 \vdots & \vdots \\
 -(x'S_{\nu}) & c_N
\end{bmatrix}, \]

due to (2.3), we obtain \(D\hat{\eta}_N = \frac{\sigma^2}{r_N} S_N, \ D\hat{c}_N = \frac{\sigma^2}{r_N} c_N \).

Let us pass to the proof of consistency of estimates \(\hat{c}_N \) and \(\hat{\eta}_N \). It is enough to show that \(D\hat{\eta}_N \to 0 \) and \(D\hat{c}_N \to 0 \) as \(N \to +\infty \) (see [4]).

Due to Couchy–Schwartz inequality, we have \(0 \leq 1 - \frac{(\sum_n S_{\nu}(n))^2}{\sum_n^2 (S_{\nu}(n))^2} < 1 \).

That is why

\[\lim_{n \to +\infty} \frac{r_N}{\sum (S_{\nu}(n))^2} = +\infty, \]

(2.4)
which follows from the representation
\[
\frac{r_n}{S_N} = \frac{\sum n^2 - \sum n \cdot S_p(n)}{\sum (S_p(n))^2} = \sum n^2 \left(1 - \frac{(\sum n \cdot S_p(n))^2}{(\sum n^2)(\sum (S_p(n))^2)} \right) .
\]

The limit relation (2.4) says that
\[D\hat{\eta}_N \to 0 \quad \text{as} \quad N \to +\infty . \]

Similarly one may prove that
\[D\hat{c}_N \to 0 \quad \text{as} \quad N \to +\infty . \]

Theorem 1 is proved.

§ 3. Properties of LSE \(\sigma_N^2 \). Let the constraint (1.2) holds.

Theorem 2. The statistics (1.5) is unbiased estimate for \(\sigma^2 \), and the statistics \(\chi_{N-2}^2 = (N-2)\frac{\sigma^2}{\sigma_N^2} \) has \(\chi^2 \)-distribution \(H^2(N-2) \) with \((N-2) \) degrees of freedom.

Proof. Let us present the predicted (by regression) value \(\hat{y} = X\beta \) in the form \(\hat{y} = (X'X)^{-1}X'y = My \), and the vector of regression remainders \(e = y - \hat{y} \) in the form \(e = y - X\beta = (I_N - M)y = By = B(X\beta + e) = Be \), because \(Bx = 0 \). Here \(I_N \) is a usual unit matrix of order \(N \).

The matrixes \(H \) and \(B \) satisfy conditions: \(H' = H, H^2 = H, B' = B, B^2 = B \).

Write down the following chain of equalities:
\[
E(e'e) = E(\sum e_n^2) = Etr(e'e) = Etr(Bee'B) = tr(BE(e'e)B') = \sigma^2 \cdot tr(BB') = \sigma^2 \cdot trB,
\]
where “\(tr \)” denotes the trace of matrix \(B \). On the other hand, \(trB = tr(I_N) - tr(M) \) and \(tr(M) = tr(X(X'X)^{-1}X') = tr(X'X(X'X)^{-1}) = trI_N = 2 \). That is why, finally, we obtain \(E(e'e) = \sigma^2(N-2) \), i.e. \(E\sigma_n^2 = \sigma^2 \).

Next we have \(\chi_{N-2}^2 = \frac{1}{\sigma^2}(ee')B(e'/\sigma) \), where \((e'/\sigma)\) is an \(N \)-dimensional standard Gaussian vector (with zero means and unit variations). Since \(B' = B, B^2 = B \), therefore, (see [3]) the statistics \(\chi_{N-2}^2 \) has \(\chi^2 \)-distribution with \(k = \text{rank}(B) \) degrees of freedom. But in this case of \(B \) we have \(\text{rank}(B) = \text{tr}B = N-2 \). Theorem 2 is proved.

Remark. It is of interest that for a given \(N \):

The estimates \(\sigma_N^2, \hat{c}_N, \hat{\eta}_N \) are independent. (3.1)

Indeed, taking into account that \(\sigma_n^2 = \frac{1}{N-2}(ee') \), it is enough to prove that LSEs \(\beta = \beta_N = (\hat{\eta}_N, \hat{c}_N) \) and remainders of regression vector \(E \) are non-correlated, because they have Gaussian distribution.

Since \(Ee = 0 \), therefore, \(\text{cov}(\beta_N, e) = E(\beta_N - \beta)e' = EAE(ee')B' = AE(e'e)B' = \sigma^2(AB) = 0 \), where the equalities \(AB = (X'X)^{-1}X'(I_N - X(X'X)^{-1}X') = 0 \) were used.
§ 4. Properties of LSEs \(\hat{c}_N \) and \(\hat{\eta}_N \). Let the constraint (1.2) holds.

Theorem 3. The statistics
\[
I^{(1)}_{N-2} = \frac{(\hat{\eta}_N - \eta)}{\sigma_N} \left(\frac{r_N}{S_N} \right)^2 \quad \text{and} \quad I^{(2)}_{N-2} = \frac{(\hat{c}_N - c)}{\sigma_N} \left(\frac{r_N}{S_N} \right)^2
\]
have Student’s distribution \(T(N-2) \) with \(N-2 \) degrees of freedom.

Proof. Due to Theorem 1, \(\hat{\eta}_N - \eta \) has Gaussian distribution \(N(0, \sigma^2_{\eta \nu}) \), where \(\sigma^2_{\eta \nu} = \frac{D N}{r_N} S_N \).

Let us take as an estimate for \(\sigma^2_{\eta \nu} \) the statistics \(\frac{S^2}{r_N} S_N \), i.e.
\[
S^2_{\eta \nu} = \frac{\sigma^2_{\eta \nu}}{r_N} = \left(\frac{\sigma^2_{\eta \nu}}{r_N} S_N \right) / r_N.
\]

Due to Theorem 2, the statistics \(X^2_{N-2} = \frac{(N-2) \frac{\sigma^2_{\eta \nu}}{\sigma^2} = \frac{1}{\sigma^2} \sum e^2_n \) has distribution \(H^2(N-2) \). Now let us consider the following statistics:
\[
I^{(1)}_{N-2} = \frac{(\hat{\eta}_N - \eta)}{\sigma_{\eta \nu}} \left(\frac{S_N}{r_N} \right)^2 = \frac{\xi_0}{S^2_{\eta \nu}} \sqrt{\frac{1}{N-2} X^2_{N-2}}
\]
where \(\xi_0 = (\hat{\eta}_N - \eta) / \sigma_{\eta \nu} \) has distribution \(N(0, 1) \) and
\[
S^2_{\eta \nu} = \frac{\sigma^2_{\eta \nu}}{r_N} \left(\frac{S_N}{r_N} \right)^2 = \frac{\sigma^2_{\eta \nu}}{\sigma^2} \sqrt{\frac{1}{N-2} X^2_{N-2}}.
\]

According to the Remark, \(\hat{\eta}_N \) and \(e \) are independent. That is why random variables \(\xi_0 \) and \(X^2_{N-2} \) are independent too. It implies, due to definition of random variable, which has Student’s distribution, that the statistics \(I^{(1)}_{N-2} \) has Student’s distribution \(T(N-2) \) with \(N-2 \) degrees of freedom.

Theorem 3 is proved.

Received 17.12.2009

REFERENCES

BUCKLING OF ISOTROPIC PLATES WITH TWO OPPOSITE SIMPLY SUPPORTED EDGES AND THE OTHER TWO EDGES ROTATIONALLY RESTRAINED UNLOADED

R. SHARIFIAN
Chair of Mechanics, YSU

The paper presents buckling loads of isotropic rectangular plates with two simply supported opposite edges and the other two edges elastically supported against rotation. An analytical method that uses the Lévy solution method is employed to determine the buckling loads of the mentioned rectangular plates. The convergence and comparison of the results with those available in the literature indicate the accuracy and the validity of the proposed technique. Effects of the elastic restraint parameters on the mode shapes are illustrated in graphic forms.

Keywords: buckling, elastic restraint, isotropic plates, rectangular plates.

Introduction. Plates of different shapes with different boundary conditions having various applied in-plane force distributions, as well as different buckling factors are considered and documented in [1–4]. Buckling of isotropic plate is discussed in numerous classical monographs. Solution procedures, development of characteristic equations and graphical presentation of buckling curves in terms of dimensionless buckling coefficient and edge restraint coefficient, are well known. Effect of the rotational restraint on the buckling load is thoroughly studied in literature as well. This paper follows the previous papers and presents in standard form parametric information on buckling.

Analysis. Consider the equation governing buckling deflection w (stability equation) for a rectangular isotropic plate, subjected to distributed compressive load P along the x-axis. The rectangular plate simply supported along the edges $x = 0$ and $x = a$, and elastically supported against rotation along the other edges is shown in Fig. 1.

\[D \Delta^2 w + P \frac{\partial^2 w}{\partial x^2} = 0, \]

\[w = 0, \quad \frac{\partial^2 w}{\partial x^2} = 0 \quad \text{at} \quad x = 0, a. \]
The boundary conditions on the rotationally restrained edges at \(y = \pm 0.5b \) are

\[
\begin{align*}
\frac{K_R}{D} w_y + w_{yy} &= 0, \\
 w &= 0
\end{align*}
\quad \text{at} \quad y = \pm 0.5b.
\]

Here \(D \) is a flexural stiffness, defined as \(D = \frac{Eh^3}{12(1-\nu^2)} \), where \(E \) is the Young’s modulus, \(\nu \) is the Poisson’s ratio, \(w \) is the deflection, \(\Delta \) is the Laplace operator, and \(K_R \) is the restraining moment along the rotationally restrained edge per unit length and per unit rotation [5]. The dimensionless coefficient of rotational restraint \(R \) (alternatively identified as \(\varepsilon \) in the literature) can be defined as \(R = \frac{K_R b}{D} \), where \(b \) is the plate’s width. The boundary condition on the restrained edges can then be written as

\[
\begin{align*}
\frac{R}{b} w_y + w_{yy} &= 0, \\
 w &= 0
\end{align*}
\quad \text{at} \quad y = \pm 0.5b. \tag{3}
\]

Fig. 1. Uniformly compressed rectangular plate simply supported along the edges \(x=0 \) and \(x=a \), and elastically supported against rotation along the other edges (SSEE plate).

The solution to (1) is chosen in a form that satisfies (2)

\[
w(x, y) = \sum_{m=1}^{\infty} f_m(y) \sin\left(\frac{m\pi}{a} x\right), \quad \mu_m = \frac{m\pi}{a}. \tag{4}
\]

The function \(f_m(y) \) is the eigenfunction, corresponding to the least eigenvalue (which is to be determined), represents the buckling shape along the \(y \)-axis. \(m \) represents the number of half-waves in the direction \(x \). Substituting (4) into (1), we find for \(f_m(y) \) the following linear ordinary differential equation:
\[
\frac{d^4 f_m}{dy^4} - 2\mu_m^2 \frac{d^2 f_m}{dy^2} + \left[\mu_m^4 - \frac{P}{D}\mu_m^2 \right] f_m = 0.
\]
(5)

Substituting (4) into (3), we obtain
\[
\begin{align*}
\frac{d^2 f_m}{dy^2} + \frac{R}{b}\frac{d f_m}{dy} + f_m &= 0, \\
&\text{at } y = \pm 0.5b.
\end{align*}
\]
(6)

The form of the solution to (5) depends on the nature of the roots \(\lambda\) of the equation
\[
\lambda^4 - 2\mu_m^2 \lambda^2 + \left[\mu_m^4 - \frac{P}{D}\mu_m^2 \right] = 0.
\]
Assuming that \(P/D > \mu_m^2\), the general solution is
\[
f_m(y) = C_1 \cosh \lambda_1 y + C_2 \sinh \lambda_1 y + C_3 \cos \lambda_2 y + C_4 \sin \lambda_2 y,
\]
(7)

where
\[
(\lambda_1)^2 = \sqrt{\mu_m^2 \frac{P}{D} + \mu_m^2}, \quad (\lambda_2)^2 = \sqrt{\mu_m^2 \frac{P}{D} - \mu_m^2}.
\]
(8)

Since the deflection \(w\) at the buckling load must be a symmetric function of \(y\), in the right hand side of (7) there remain only the first and the third terms. Thus,
\[
f_m(y) = C_1 \cosh \lambda_1 y + C_3 \cos \lambda_2 y,
\]
(9)

and the general mode shape is given by \(w(x,y) = \sum_{m=1}^{\infty} (C_1 \cosh \lambda_1 y + C_3 \cos \lambda_2 y) \sin(\mu_m x)\).

The unknown constants \(C_1\) and \(C_3\) are determined from the edge conditions at \(y = \pm 0.5b\). Substituting (9) into (6) and considering \(w_{ex} = 0\) at \(y = \pm 0.5b\), a set of simultaneous equations with regard to \(C_1\) and \(C_3\) is obtained:
\[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
C_1 \\
C_3
\end{bmatrix} = 0.
\]

Here \(A_{11} = \lambda_1^2 \cosh(\lambda_1 b/2) + (R/b)\lambda_1 \sinh(\lambda_1 b/2)\), \(A_{12} = -\lambda_1^2 \cos(\lambda_1 b/2) - (R/b)\lambda_1 \sin(\lambda_1 b/2)\), \(A_{21} = \cosh(\lambda_2 b/2)\), \(A_{22} = \cos(\lambda_2 b/2)\).

The condition \(\Delta = 0\) yields the following characteristic buckling equation:
\[
\Delta = A_{11}A_{22} - A_{12}A_{21} = 0,
\]
\[
\lambda_1^2 \cosh(\lambda_1 b/2) \cosh(\lambda_2 b/2) + (R/b)\lambda_1 \cos(\lambda_2 b/2) \sinh(\lambda_1 b/2) + \\
+ \lambda_2^2 \cosh(\lambda_1 b/2) \cos(\lambda_2 b/2) + (R/b)\lambda_2 \cosh(\lambda_1 b/2) \sin(\lambda_2 b/2) = 0.
\]
(10)

Since \(\lambda_1\) and \(\lambda_2\) contain \(P\) (8), (10) can be solved, using an iterative scheme, for the smallest \(P\), denoted by \(P_{cr}\), once the geometric and material parameters of the plate are known. The critical buckling may be written as
\[
P_{cr} = k\frac{\pi^2 D}{b^2},
\]
where \(k\) is a numerical factor (buckling coefficient), depending on the plate aspect ratio and material properties.

The transcendental equation is solved to determine the buckling coefficient, \(k\), as a function of plate properties, the value of the edge restraint coefficient \(R\), the
plate aspect ratio a/b and the mode number m. The buckling mode is given by the mode number, for which the smallest k is obtained for a given set of parameters.

Results and Discussion. Matlab program was written to perform the parametric studies reported below. Parametric studies were performed to investigate the influence of material properties, rotational restraint and mode number on the buckling characteristics of this plate. Buckling load P was obtained for different coefficients of rotational restraint values as a function of the plate aspect ratio a/b. Buckling curves are shown in Fig. 2. Due to the fact that the rotational restraint is a variable parameter $R = 0, 4, 10, 30, 10000$, $R = 0$ corresponds to a simple support, and $R = \infty$ corresponds to a clamped support. Intermediate values of R imply partial rotational restraint. In the numerical studies $R = 10000$ was taken to represent $R = \infty$ [4, 5].

![Fig. 2. Non-dimensional buckling loads, $\tilde{P} = P \theta^2 / \pi^2 D$, versus plate aspect ratio a/b:

a) $R = 0$; b) $R = 4$; c) $R = 10$; d) $R = 30$; e) $R = 10,000$; f) $0 \leq R \leq 10,000$.](image-url)
Conclusions. Buckling of an isotropic plate, free supported on its loaded edges, and rotationally restrained on its unloaded edges has been considered in this paper. The correct form of the characteristic transcendental equation for this buckling problem has been provided. Parametric studies have been conducted and buckling curves have been presented.

- $R = 10000 \equiv \infty$. The minimum value of the buckling load $\bar{P} = 6.976$ occurs at $a/b = 0.665$. There is a mode change at $a/b = 0.936$ from $m = 1$ to $m = 2$, the buckling load for this aspect ratio is $\bar{P} = 8.095$, and the minimum buckling load $\bar{P} = 6.976$ for mode $m = 2$ occurs at $a/b = 1.329$. These results correspond to a clamped support [4].

- $R = 0$. For this case the minimum value of the buckling load $\bar{P} = 4.008$ occurs at $a/b = 1$. The result corresponds to exact a simply support [4].

- $0 < R < 10000$. The other buckling curves are between two sets of the mentioned buckling load.

Received 10.06.2009

REFERENCES

ON THE TYPE CORRECTNESS OF POLYMORPHIC λ-TERMS. 2

A. H. ARAKELYAN

Chair of Programming and Information Technologies, YSU

In this paper the polymorphic lambda terms are considered, where no type information is provided for the variables. The aim of this work is to prove that presented typification algorithm [1] typifies such terms in most common way.

Keywords: type, term, constraint, skeleton, expansion, principal typing.

1. Introduction. Types are used in programming languages to analyze programs without executing them, for purposes such as detecting programming errors earlier, for doing optimizations etc. In some programming languages no explicit type information is provided by the programmer, hence some system of type inference is required to recover the lost information and do compile time type checking. One of such type inference systems is the well known Hindley/Milner system [2], used in languages such as Haskell, SML, OCaml etc. An important property of the type systems is the property of principal typings [3, 4], which allows the compiler to do compositional analysis, i.e. analysis of modules in absence of information about other modules [3, 4]. Unfortunately the Hindley/Milner system doesn't support the property of principal typings [3]. This paper is the continuation of [1], in which we consider the extension of the type inference system called System E. In section 2 we prove that the type inference algorithm returns the principal typing of a term.

2. Principal Typing of a Term.

2.1. Preliminary Definitions and Facts. Before proving that the type inference algorithm returns the principal typing of a term let us present some definitions and facts.

Definition 2.1. Let $Q_1, Q_2 \in \text{Skeleton}$. Q_1 and Q_2 are equivalent, written $Q_1 \approx Q_2$, iff $\text{term}(Q_1) = \text{term}(Q_2)$, $\text{typing}(Q_1) = \text{typing}(Q_2)$, $\text{constraint}(Q_1) = \text{constraint}(Q_2)$. In other words, $Q_1 \approx Q_2$, iff the judgements $(M \triangleright Q_1) : (A \vdash \tau) / \Delta$ and $(M \triangleright Q_2) : (A \vdash \tau) / \Delta$ are both inferable or not inferable.

Lemma 2.1. The following skeletons are equivalent:

1. $(Q_1 \cap (Q_2 \cap Q_3)) \approx ((Q_1 \cap Q_2) \cap Q_3)$;
2. $(Q_1 \cap Q_2) \approx (Q_2 \cap Q_1)$;
3. $(\omega^M \cap Q) \approx Q$;
4. $e(Q_1 \cap Q_2) \approx (eQ_1 \cap eQ_2)$;
5. $e\omega^M \approx \omega^M$,

where $Q_1, Q_2, Q_3 \in \text{Skeleton}$ and $M \in \text{Term}$ and $e \in \text{ExpansionVariable}$.

* E-mail: ara_arakelyan@yahoo.com
Let us consider the judgement \((M > Q) : (A \vdash \tau) / \Delta\) that is inferable. In many cases we will consider the maximal subtrees of the inference tree of that judgement that have root node corresponding to one of the following type inference rules: [VAR], [CONST], [OMEGA], [ABS] and [APP].

Lemma 2.2. Let \((M > Q) : (A \vdash \tau) / \Delta\) be an inferable judgement. Then there exist E-paths \(\epsilon'_1, \ldots, \epsilon'_n\), environments \(A_1, \ldots, A_n\), \(Q_1, \ldots, Q_n \in \text{Skeleton}\), \(\tau_1, \ldots, \tau_n \in \text{Type}\) and \(\Delta_1, \ldots, \Delta_n \in \text{Constraint}\), \(n \geq 1\), such that \(Q = \epsilon'_1 A_1 \cap \ldots \cap \epsilon'_n A_n\), \(A = \epsilon'_1 \tau_1 \cap \ldots \cap \epsilon'_n \tau_n\), \(\Delta = \epsilon'_1 \Delta_1 \cap \ldots \cap \epsilon'_n \Delta_n\) and judgements \((M > Q_i) : (A_i \vdash \tau_i) / \Delta_i, i = 1, \ldots, n\), are inferable, and in the last step of inference of that judgements one of the following rules is used: [VAR], [CONST], [OMEGA], [ABS] and [APP].

A free occurrence of the subskeleton \(x^i\) in skeleton \(Q\) is defined in a conventional way, i.e. the occurrence of the subskeleton \(x^i\) in skeleton \(Q\) is called free, if it doesn’t fall within the scope of a lambda that uses variable \(x\), otherwise, the occurrence is called bounded. It is easy to see, that if the skeleton \(Q’\) is obtained from the skeleton \(Q\) by renaming some term variables, then \(Q \approx Q’\). Let us introduce the following notations:

1. We denote by \(Q(Q_1, \ldots, Q_n)\), \(n \geq 0\), the skeleton \(Q\), in which mutually different subskeltones \(Q_1, \ldots, Q_n\) are considered.
2. We denote by \(Q(Q_1 := Q’, \ldots, Q_n := Q’_n)\), \(n \geq 0\), those skeletons that are obtained from the skeleton \(Q(Q_1, \ldots, Q_n)\) through substituting the subskeltons \(Q_1, \ldots, Q_n\) by \(Q’, \ldots, Q’_n\) respectively. The substitution mentioned above is called canonical, iff all free occurrences of subskeltons in \(Q\) are also free in \(Q(Q_1, \ldots, Q_n)\), and all free occurrences of subskeltons in \(Q’\) are also free in \(Q(Q_1 := Q’, \ldots, Q_n := Q’_n)\), \(i = 1, \ldots, n\). Henceforth only canonical substitutions of skeletons will be considered.

Definition 2.2. Let \(Q(Q’) \in \text{Skeleton}\). Then the E-Path of the skeleton \(Q’\) in \(Q\), written as \(E-Path(Q(Q’))\), is calculated as follows:

1. If \(Q = Q’\), then \(E-Path(Q(Q’)) = \epsilon\);
2. If \(Q = \epsilon Q_1\), and \(Q’\) is a subskleton of \(Q\), then \(E-Path(Q(Q’)) = e E-Path(Q(Q’))\), where \(Q \in \text{Skeleton}\) and \(e \in \text{ExpansionVariable}\);
3. If \(Q = (\lambda x.Q_1)\), and \(Q’\) is a subskleton of \(Q\), then \(E-Path(Q(Q’)) = e E-Path(Q(Q’))\), where \(Q \in \text{Skeleton}\), \(x \in \text{TermVariable}\);
4. If \(Q = (Q_1 \cap Q_2)\), and \(Q’\) is a subskleton of \(Q\), then \(E-Path(Q(Q’)) = e E-Path(Q(Q’))\), where \(Q_1, Q_2 \in \text{Skeleton}\);
5. If \(Q = (Q_1 \cap Q_2)\), and \(Q’\) is a subskleton of \(Q\), then \(E-Path(Q(Q’)) = e E-Path(Q(Q’))\), where \(Q_1, Q_2 \in \text{Skeleton}\).

39

=E-Path\(\{Q_1(Q')\} \), where \(Q_1, Q_2 \in \text{Skeleton} \);

6. If \(Q=(Q_1Q_2)^\tau \), and \(Q' \) is a subskelton of \(Q \), then \(E-Path\(\{Q(Q')\} = E-Path\(\{Q(Q')\} \), where \(Q_1, Q_2 \in \text{Skeleton} \) and \(\tau \in \text{Type} \);

7. If \(Q=(Q_1Q_2)^\tau \), and \(Q' \) is a subskelton of \(Q_2 \), then \(E-Path\(\{Q(Q')\} = E-Path\(\{Q_2(Q')\} \), where \(Q_1, Q_2 \in \text{Skeleton} \) and \(\tau \in \text{Type} \).

Let us present some simple propositions without proof.

Proposition 2.1. Let \(Q \in \text{Skeleton} \) and \(\tau \in \text{Type} \), where \(\tau_1, \ldots, \tau_n \in \text{Type} \) and \(\bar{\epsilon}_1, \ldots, \bar{\epsilon}_n \) are \(E \)-Paths. Then \(\exists Q_1, \ldots, Q_n \in \text{Skeleton} \) such that \(Q \approx Q_1 \cap \cdots \cap Q_n \) and \(\text{type}(Q) = \tau_1, \ldots, \tau_n \).

Proposition 2.2. Let \(Q(Q_1,\ldots,Q_n) \in \text{Skeleton} \), \(n \geq 0 \), and \(Q', \ldots, Q_n \in \text{Skeleton} \). Then if \(\text{type}(Q') = \tau_1, \ldots, \tau_n \), then \(\text{type}(Q(Q_1,\ldots,Q_n)) = \tau_1, \ldots, \tau_n \).

Proposition 2.3. Let \(Q(x_1^\tau,\ldots,x_n^\tau) \in \text{Skeleton} \) and only subskeletons \(x_1^\tau, \ldots, x_n^\tau \) have free occurrence in \(Q \) and \(Q_1, \ldots, Q_n \in \text{Skeleton} \), where \(x \in \text{TermVariable} \) and \(\tau_1, \ldots, \tau_n \in \text{Type} \), \(n \geq 0 \). Then if \(\text{term}(Q(x_1^\tau,\ldots,x_n^\tau)) = M_1 \) and \(\text{term}(Q_1) = M_2 \) \(\forall i=1,\ldots,n \), then \(\text{term}(Q(x_1^\tau = Q_1,\ldots,x_n^\tau = Q_n)) = M_1[x = M_2] \).

Proposition 2.4. Let \(Q(x^\tau) \in \text{Skeleton} \) and \(Q' \in \text{Skeleton} \) and \(\text{type}(Q') = \tau \), where \(\tau \in \text{Type} \) and \(x \in \text{TermVariable} \). Then \(\text{constraint}(Q(x^\tau := Q')) = \text{constraint}(Q(x^\tau)) \cap E-Path\(\{Q(x^\tau)\} \text{constraint}(Q') \).

Let us consider the term \(M \notin \beta - \text{NF} \) and one step of \(\beta \)-reduction: \(M \rightarrow_\beta M' \). Now we are going to show that if \((M \vdash \tau) \) is a typing of term \(M \), then it is also a typing of term \(M' \).

Lemma 2.3. Let \(Q(x_1^\tau,\ldots,x_n^\tau) \in \text{Skeleton} \) and only subskeletons \(x_1^\tau, \ldots, x_n^\tau \) have free occurrence in \(Q \) and \(\bar{\epsilon}_1 = E-Path\(\{Q(x_1^\tau)\} \), \(i=1,\ldots,n \), where \(\tau_1, \ldots, \tau_n \in \text{Type} \) and \(x \in \text{TermVariable} \), \(n \geq 0 \). Then \(\text{env}(Q)(x) = \bar{\epsilon}_1 \tau_1 \cap \cdots \cap \bar{\epsilon}_n \tau_n \).

Proof. By induction on form of skeleton \(Q \).

1. Let \(Q = \omega^M \), where \(M \in \text{Term} \). We must show that \(\text{env}(Q)(x) = \omega \). By the rule [OMEGA], \(\text{env}(Q) = \omega \Rightarrow \text{env}(Q)(x) = \omega \).

2. Let \(Q = c^\tau \), where \(c \in \text{Constant} \) and \(\tau \in \text{Type} \). We must show that \(\text{env}(Q)(x) = \omega \). By the rule [CONST], \(\text{env}(Q) = \omega \Rightarrow \text{env}(Q)(x) = \omega \).
3. Let $Q = y^\tau$, where $x \neq y \in \text{TermVariable}$ and $\tau \in \text{Type}$. We must show that $\text{env}(Q)(x) = \omega$. By the rule [VAR], $\text{env}(Q) = \text{env}_{\omega}[y \to \tau] \Rightarrow \text{env}(Q)(x) = \omega$.

4. Let $Q = x^\tau$, where $\tau \in \text{Type}$. We must show that $\text{env}(Q)(x) = \tau$. By the rule [VAR], $\text{env}(Q) = \text{env}_{\tau}[x \to \tau] \Rightarrow \text{env}(Q)(x) = \tau$.

5. Let $Q = eQ'$, where $e \in \text{ExpansionVariable}$ and $Q' \in \text{Skeleton}$. Assume that only subskeletons x^i_1, \ldots, x^i_n have free occurrence in Q' and $
abla_i = \text{E-Path}(Q'\left(x^{i_1}\right))$, where $i = 1, \ldots, n$, $n \geq 0$. We must show that $\text{env}(Q)(x) = e\nabla_1 \cap \ldots \cap \nabla_n$. By induction hypothesis, $\text{env}(Q')(x) = e\nabla_1 \cap \ldots \cap \nabla_n$. By the rule [E-VAR], $\text{env}(Q) = \text{env}(Q'[y \to \omega]) \Rightarrow \text{env}(Q)(x) = \text{env}(Q')(x) = e\nabla_1 \cap \ldots \cap \nabla_n$.

6. Let $Q = (\lambda y.Q')$, where $y \in \text{TermVariable}$ and $Q' \in \text{Skeleton}$. Assume that only subskeletons x^i_1, \ldots, x^i_n have free occurrence in Q' and $
abla_i = \text{E-Path}(Q'\left(x^{i_1}\right))$, where $i = 1, \ldots, n$, $n \geq 0$. We must show that $\text{env}(Q)(x) = e\nabla_1 \cap \ldots \cap \nabla_n$. By induction hypothesis, $\text{env}(Q')(x) = e\nabla_1 \cap \ldots \cap \nabla_n$. By the rule [ABS], $\text{env}(Q) = \text{env}(Q'[y \to \omega]) \Rightarrow \text{env}(Q)(x) = \text{env}(Q')(x) = e\nabla_1 \cap \ldots \cap \nabla_n$.

7. Let $Q = (Q_1 \land Q_2)$, where $Q_1, Q_2 \in \text{Skeleton}$. Assume that only subskeletons x^i_1, \ldots, x^i_n have free occurrence in Q_1 and only subskeletons x^{i_1}, \ldots, x^{i_1} have free occurrence in Q_2, and $
abla_i = \text{E-Path}(Q_1\left(x^{i_1}\right))$, $\nabla_j = \text{E-Path}(Q_2\left(x^{i_2}\right))$, where $i = 1, \ldots, m$, $j = 1, \ldots, k$ and $m, k \geq 0$. We must show that $\text{env}(Q)(x) = e\nabla_1 \cap \ldots \cap \nabla_m \cap \nabla_1' \cap \ldots \cap \nabla_k'$. By induction hypothesis, $\text{env}(Q_1)(x) = e\nabla_1 \cap \ldots \cap \nabla_m \cap \nabla_1'$ and $\text{env}(Q_2)(x) = e\nabla_1' \cap \ldots \cap \nabla_k'$. By the rule [INT], $\text{env}(Q) = \text{env}(Q_1) \land \text{env}(Q_2) \Rightarrow \text{env}(Q)(x) = \text{env}(Q_1)(x) \cap \text{env}(Q_2)(x) = e\nabla_1 \cap \ldots \cap \nabla_m \cap \nabla_1' \cap \ldots \cap \nabla_k'$.

8. Let $Q = (Q_1 \lor Q_2)$, where $Q_1, Q_2 \in \text{Skeleton}$. Assume that only subskeletons x^i_1, \ldots, x^i_n have free occurrence in Q_1, only subskeletons x^{i_1}, \ldots, x^{i_1} have free occurrence in Q_2, and $
abla_i = \text{E-Path}(Q_1\left(x^{i_1}\right))$, $\nabla_j = \text{E-Path}(Q_2\left(x^{i_2}\right))$, where $i = 1, \ldots, m$, $j = 1, \ldots, k$ and $m, k \geq 0$. We must show that $\text{env}(Q)(x) = e\nabla_1 \cap \ldots \cap \nabla_m \cap \nabla_1' \cap \ldots \cap \nabla_k'$. By induction hypothesis, $\text{env}(Q_1)(x) = e\nabla_1 \cap \ldots \cap \nabla_m \cap \nabla_1'$ and $\text{env}(Q_2)(x) = e\nabla_1' \cap \ldots \cap \nabla_k'$. By the rule [APP], $\text{env}(Q) = \text{env}(Q_1) \lor \text{env}(Q_2) \Rightarrow \text{env}(Q)(x) = \text{env}(Q_1)(x) \lor \text{env}(Q_2)(x) = e\nabla_1 \cap \ldots \cap \nabla_m \cap \nabla_1' \cap \ldots \cap \nabla_k'$.

Lemma 2.4 Let $M_1, M_2 \in \text{Term}$ and $x \in \text{TermVariable}$. If $(A \lor \tau)$ is a typing of term $((\lambda x.M_1)M_2)$, then it is also a typing of term $M_1[x := M_2]$.
Proof. Because \((A \vdash \tau) \) is a typing of term \(((\lambda x. M_1) M_2) \), there exist \(Q \in \text{Skeleton} \) and \(\Delta \in \text{Constraint} \) such that the judgement \((((\lambda x. M_1) M_2) \triangleright Q) : (A \vdash \tau) / \Delta \) is inferable, and \(\Delta \) is solved. There are three cases to consider:

1. In the last step of inference of the judgement \((((\lambda x. M_1) M_2) \triangleright Q) : (A \vdash \tau) / \Delta \) the rule \([\text{OMEGA}]\) is used. Then \(Q = \omega (A \vdash (\lambda x. M_1) M_2) \), \((A \vdash \tau) = (\text{env}_n \vdash \omega) \) and \(\Delta = \omega \). Because \((\text{env}_n \vdash \omega) \) is a typing of any term, it is also a typing of term \(M_1[x := M_2] \).

2. In the last step of inference of the judgement \((((\lambda x. M_1) M_2) \triangleright Q) : (A \vdash \tau) / \Delta \) rule \([\text{APP}]\) is used. Then \(Q = (Q_1, Q_2) \) and the judgements \(((\lambda x. M_1) \triangleright Q_1) : (A \vdash \tau_1) / \Delta_1 \) and \((M_2 \triangleright Q_2) : (A_2 \vdash \tau_2) / \Delta_2 \) are inferable, and \(A = A_1 \cap A_2 \) and \(\tau = \tau_1 \cap \tau_2 \), and \(\Delta = \Delta_1 \cap \Delta_2 \cap (\tau_1 = (\tau_2 \rightarrow \tau)) \) (1). Because \(\Delta \) is solved, \((1) \Rightarrow \tau_1 = (\tau_2 \rightarrow \tau) \) (2), and constraints \(\Delta_1, \Delta_2 \) are solved. (2) \(\Rightarrow \) in the last step of inference of the judgement \(((\lambda x. M_1) \triangleright Q_1) : (A \vdash \tau_1) / \Delta_1 \) the rule \([\text{ABS}]\) is used. Hence, \(Q = (\lambda x. Q') \) and the judgement \((M_1 \triangleright Q') : (A \vdash \tau') / \Delta' \) is inferable, and \(A_1 = A'[x \rightarrow \omega] \) and \(\tau_1 = (\tau_2 \rightarrow \tau) = (A'(x) \rightarrow \tau') \), and \(\Delta_1 = \Delta' \) (3). (3) \(\Rightarrow \tau_2 = A'(x) \) and \(\tau = \tau' \), and constraint \(\Delta' \) is solved (4). Assume that only subskeltons \(x_1^{\tilde{e}_1}, \ldots, x_n^{\tilde{e}_n}, n \geq 0 \), have free occurrence in \(Q' \). By Lemma 2.3, \(A'(x) = \tilde{e}_i \tau_1 \cap \cdots \cap \tilde{e}_n \tau_n \) (5), where \(\tilde{e}_i = E-\text{Path}(Q') \) \(x_i^{\tilde{e}_i} \), \(i = 1, \ldots, n \). (4), (5) \(\Rightarrow \tau_2 = \tilde{e}_i \tau_1 \cap \cdots \cap \tilde{e}_n \tau_n \) (6). By Proposition 2.1 and (6), \(Q_2 \approx \tilde{e}_i Q_1 \cap \cdots \cap \tilde{e}_n Q_n \) and \(\text{type}(Q') = \tau_i', \ i = 1, \ldots, n \) (7). Let us consider the following skeleton:

\[Q'' = Q' \langle x_1^{\tilde{e}_1}, \ldots, x_n^{\tilde{e}_n} \rangle \]

Now we will calculate \(\text{term}(Q''), \text{env}(Q''), \text{type}(Q'') \) and \(\text{constraint}(Q'') \).

2a. (1), (3) \(\Rightarrow \text{term}(Q') = \text{term}(Q' \langle x_1^{\tilde{e}_1}, \ldots, x_n^{\tilde{e}_n} \rangle) \) and \(\text{term}(Q_2) = M_2 \).

(7) \(\Rightarrow \text{term}(Q_2) = \text{term}(\tilde{e}_i Q_1 \cap \cdots \cap \tilde{e}_n Q_n) = \text{term}(Q') = \cdots = \text{term}(Q'_n) = M_2 \). Hence by Proposition 2.3, \(\text{term}(Q'') = M_1[x := M_2] \) (8).

2b. Let us show that \(\text{env}(Q')(y) = A(y) \) \(\forall y \in \text{TermVariable} \) such that \(y \neq x \). By Lemma 2.3, \(A(y) \) depends on subskeltons of the form \(y^{\tilde{e}} \) that have free occurrence in skeleton \(Q = (\lambda x. Q') Q_2 \), and their \(E-\text{Paths} \) in that skeleton and \(\text{env}(Q')(y) \) depend on subskeltons of the form \(y^{\tilde{e}} \) that have free occurrences in skeleton \(Q'' = Q' \langle x_1^{\tilde{e}_1}, \ldots, x_n^{\tilde{e}_n} \rangle \) and their \(E-\text{Paths} \) in that skeleton. Due to (7), \(Q \approx ((\lambda x. Q') \langle \tilde{e}_i Q_1 \cap \cdots \cap \tilde{e}_n Q_n \rangle) \). Hence, it is easy to see that the both skeletons \(Q \) and \(Q'' \) have the same free occurrences of subskeltons of the form \(y^{\tilde{e}} \) with the same \(E-\text{Path} \Rightarrow \text{env}(Q')(y) = A(y) \) (9). Now let us show that \(\text{env}(Q'')(x) = A(x) \). Assume that there is no subskelton of form \(x^{\tilde{e}} \) that have free occurrence in skeleton \(Q_2 \), otherwise, we would rename the bound variable \(x \) in skeleton.
(\lambda x Q'). Hence, it is easy to see that both skeletons \(Q \) and \(Q'' \) have no free occurrences of sub-skeletons of form \(x^i' \Rightarrow env(Q') = A(x) = \omega \) (10). (9), (10) \(\Rightarrow env(Q'') = A \) (11).

2c. (3) \(\Rightarrow \) type\((Q') = type\left(Q'\left(x^i, \ldots, x^i\right) \right) = \tau' \). By proposition 2.2, (4) and (7), type\((Q'') = type\((Q') = \tau = \tau \Rightarrow type\((Q'') = \tau \) (12).

2d. (1), (3) \(\Rightarrow \) constraint\((Q_2) = \Delta_2 \) and constraint\((Q') = \Delta' = \Delta_1 \). (7) \(\Rightarrow \) constraint\((Q_2) = \exists_i constraint\((Q') \cap \ldots \cap \exists_n constraint\((Q_n) \) (13). By Proposition 2.4, constraint\((Q'') = constraint\((Q') \cap E-Path\left(Q'\left(x^i\right) \right) \cap \) constraint\((Q_i) \cap \ldots \cap E-Path\left(Q\left(x^i\right) \right) \cap constraint\((Q_n) \) (14). (13), (14) \(\Rightarrow \) constraint\((Q'') = \Delta_1 \cap \Delta_2 \) (15). (8), (11), (12), (15) \(\Rightarrow \) \(\exists M[x := M_2] \downarrow Q'\left(x^i = Q'_1, \ldots, x^i = Q'_n\right) : (A \eta \tau) / \Delta_1 \cap \Delta_2 \) is inferable, and constraints \(\Delta_1, \Delta_2 \) are solved. Hence, \(A \eta \tau \) is typing of term \(M[x := M_2] \).

3. In the last step of inference of the judgement \(((\lambda x M_j)M_2) \downarrow Q) : (A \eta \tau) / \Delta \) the rules [OMEGA] and [APP] is not used. By Lemma 2.2, \(Q \approx \exists_i Q_1 \cap \ldots \cap \exists_n Q_n, A = \exists_i A_1 \cap \ldots \cap \exists_n A_n, \tau = \exists_i \tau_1 \cap \ldots \cap \exists_n \tau_n \) and \(\Delta = \exists_i \Delta_1 \cap \ldots \cap \exists_n \Delta_n \), and the following judgements are inferable: \(((\lambda x M_j)M_2) \downarrow Q) : (A \eta \tau_i) / \Delta_i, i = 1, \ldots, n, n \geq 1. \) In our case in the last step of inference of the judgements \(((\lambda x M_j)M_2) \downarrow Q) : (A \eta \tau_i) / \Delta_i, i = 1, \ldots, n, \) the rule [OMEGA] or rule [APP] is used \(\Rightarrow \) by 1st and 2nd points of our proof, \((A \eta \tau_i) \) is typing of term \(M_j[x := M_2] \) \(\Rightarrow \) by the rules [INT], [E-VAR], \(\exists \exists_i A_1 \cap \ldots \cap \exists_n A_n, \eta \exists_i \tau_1 \cap \ldots \cap \exists_n \tau_n = (A \eta \tau) \) is the typing of term \(M_j[x := M_2] \).

Lemma 2.5. Let \(M, M' \in \text{Term} \) and \(M \rightarrow_{\beta} M' \). If \((A \eta \tau) \) is a typing of term \(M \), then it is also a typing of term \(M' \).

Proof. Let us denote by \(M_\beta \) the \(\beta \)-redex corresponding to the one step of beta reduction \(M \rightarrow_{\beta} M' \). We will prove Lemma by induction on the form of term \(M \).

1. Let \(M = M_\beta \). By Lemma 2.4, \((A \eta \tau) \) is typing of term \(M' \). We will prove Lemma by induction on the form of term \(M \).

2. Let \(M = (\lambda x M_j) \), where \(M_j \in \text{Term} \) and \(M_\beta \) is subterm of \(M_j \). \((A \eta \tau) \) is typing of term \((\lambda x M_j) \Rightarrow \exists Q \in \text{Skeleton} \), s.t. the judgement \(((\lambda x M_j) \downarrow Q) : (A \eta \tau) / \Delta \) is inferable and \(\Delta \) is solved. By Lemma 2.2, \(Q \approx \exists_i Q_1 \cap \ldots \cap \exists_n Q_n, A = \exists_i A_1 \cap \ldots \cap \exists_n A_n, \tau = \exists_i \tau_1 \cap \ldots \cap \exists_n \tau_n \) and \(\Delta = \exists_i \Delta_1 \cap \ldots \cap \exists_n \Delta_n \), and the following judgements are inferable: \(((\lambda x M_j) \downarrow Q) : (A \eta \tau_i) / \Delta_i, i = 1, \ldots, n, n \geq 1. \) In our case in the last step of inference of the judgements \(((\lambda x M_j) \downarrow Q) : (A \eta \tau_i) / \Delta_i, i = 1, \ldots, n, \) the rule [OMEGA] or rule [ABS] is used.

Let us show that \((A \eta \tau_i) \) is a typing of term \(M' \). In that case \((A \eta \tau) = \exists \exists_i A_1 \cap \ldots \cap \exists_n A_n, \eta \exists_i \tau_1 \cap \ldots \cap \exists_n \tau_n \) will also be typing of term \(M' \) (using the rules [E-VAR] and [INT]), which we need to prove.
$M \rightarrow_{\beta} M' \Rightarrow \exists M'_1 \in \text{Term}$ such that $M' = (\lambda x.M'_1)$ and $M_1 \rightarrow_{\beta} M'_1$. There are two cases to consider:

2a. In the last step of inference of the judgement $(\lambda x.M_1) : Q \Rightarrow (A \triangleright x) : \Delta$, the rule [OMEGA] is used. Then $(A \triangleright x) = (env_\omega \triangleright x)$. Because $(env_\omega \triangleright x)$ is a typing of any term, it is also a typing of term M'.

2b. In the last step of inference of the judgement $(\lambda x.M_1) : Q \Rightarrow (A \triangleright x) : \Delta$, the rule [ABS] is used. Then $(A \triangleright x)$ is a typing of term M'_1 such that $(A \triangleright x) = (A_1[x \rightarrow \omega])$. Because $(A \triangleright x)$ is a typing of any term, it is also a typing of term M'.

3. Let $M = (M_1.M_2)$, where $M_1, M_2 \in \text{Term}$ and M_β is a subterm of M_1.

3a. In the last step of inference of the judgement $(M_1.M_2) : Q \Rightarrow (A \triangleright x) : \Delta$, the rule [OMEGA] is used. Then $(A \triangleright x)$ is a typing of term M_1. Because $(A \triangleright x)$ is a typing of any term, it is also a typing of term M'.

3b. In the last step of inference of the judgement $(M_1.M_2) : Q \Rightarrow (A \triangleright x) : \Delta$, the rule [APP] is used. Then $(A \triangleright x)$ is a typing of term M'_1 such that $(A \triangleright x) = (A_1[x \rightarrow \omega])$. Because $(A \triangleright x)$ is a typing of any term, it is also a typing of term M'.

4. Let $M = (M_1.M_2)$, where $M_1, M_2 \in \text{Term}$ and M_β is a subterm of M_2.

The proof is similar to the proof of 3rd point.

2.2 Type Inference Algorithm and Principal Typing of Term. In this subsection we will prove that in case of success the type inference algorithm returns the principal typing of term. First of all let us consider terms that are in β-normal form.

Lemma 2.6. Let $M \in \text{Term}$ and $M \in \beta$-NF. Then if the judgement
(M ⊢ Q'): (A' ✄ τ')/Δ' is inferable, constraint Δ' is solved, and the rule [OMEGA] is not used in the inference of that judgement, then:

1. (A' ✄ τ) = Typify(M), i.e. the type inference algorithm succeeds for input M.
3. If in the last step of inference of the judgement (M ⊢ Q'): (A' ✄ τ')/Δ' one of the rules [VAR], [CONST], [ABS] or [APP] is used, then the expansion E is a substitution of the following form: E = {a₀ := τ₀} in case of [VAR]; E = e in case of [CONST], E = {e₀ := Eᵦ₀} in case of [ABS]; E = {a₀ := τ₀, e₁ := Eᵃ₁, e₂ := Eᵦ₂} in case of [APP].

Proof. By induction on the form of term M.

1. Let M = x, where x ∈ TermVariable. Then by the type inference algorithm definition, A = envₐ[x → a₀] and τ = a₀, which is the proof of first part of Lemma's statement. There are two cases to consider:

 1a. In the last step of inference of the judgement (M ⊢ Q'): (A' ✄ τ')/Δ' the rule [VAR] is used. Then Q' = x⁻¹, A' = envₐ[x → τ'] and Δ' = ω. Let E = {a₀ := τ'} ⇒ A = [E]A and τ' = [E]τ, which we need to prove.

 1b. In the last step of inference of the judgement (M ⊢ Q'): (A' ✄ τ')/Δ' the rule [E-VAR] or rule [INT] is used. By Lemma 2.2, Q' = _CFG₁ ∩ ⋯ ∩ _CFGₙ, A' = _CFG₁ ∩ ⋯ ∩ _CFGₙ, τ' = ᵈ₁τ₁ ∩ ⋯ ∩ ᵈₙτₙ and Δ' = ᵈ₁Δ₁ ∩ ⋯ ∩ ᵈₙΔₙ, and the following judgements are inferable: (M ⊢ Q'): (A' ✄ τ')/Δ', i = 1, ⋯, n. In our case in the last step of inference of the judgements (M ⊢ Q'): (A' ✄ τ')/Δ', i = 1, ⋯, n, the rule [VAR] is used. Hence, by point 1a, ∃Eᵦ₁, ⋯, Eᵦₙ ∈ Expansion, s.t. A' = [E]Aᵦ₁ τ' = [E]τᵦ₁, i = 1, ⋯, n (1).

2. Let M = c, where c ∈ Constant. Then by the type inference algorithm definition [1], A = envₐ and τ = Σ(c), which is the proof of first part of Lemma's statement. There are two cases to consider:

 2a. In the last step of inference of the judgement (M ⊢ Q'): (A' ✄ τ')/Δ' the rule [CONST] is used. Then Q' = x⁻¹(c), A' = envₐ, τ' = Σ(c) and Δ' = ω. Let E = e ⇒ A' = [E]A and τ' = [E]τ, which is to be proved.

 2b. In the last step of inference of the judgement (M ⊢ Q'): (A' ✄ τ')/Δ' the rule [E-VAR] or the rule [INT] is used. The proof is similar to the proof of point 1b.

3. Let M = (λx.M₁), where x ∈ TermVariable and M₁ ∈ Term. Let P₁ = initial(M₁) and P = initial(M) = (λxₑPₓ₁) ⇒ constraint(P) = e₀constraint(P₁).

 Hence, by definition of the unification algorithm [1] and unification rules unify₀, unify₀, unifyₑ [1], σ = Unify(constraint(P)) ⇔ σ₁ = Unify(constraint(P₁)), where
Due to (2), due to the definition of the type inference algorithm [1] and definitions of algorithms env and type [1], \(A \vDash \tau = \text{Typify}(M) \Leftrightarrow (A \vDash \tau_1) = \text{Typify}(M_i) \), where \(A = e_0A_i[x \rightarrow \omega] \) and \(\tau = (e_0A_i(x) \rightarrow e_0\tau_1) \) (3). There are two cases to consider:

3a. In the last step of inference of the judgement \((M \vDash Q'): (A' \vDash \tau') / \Delta' \) the rule [ABS] is used. Then \(Q' = (\lambda x. Q') \), \(A' = A'[x \rightarrow \omega] \), \(\tau' = (A'(x) \rightarrow \tau'_1) \) and the judgement \((M_i \vDash Q'_i): (A' \vDash \tau'_i) / \Delta' \) is inferable (4). It is easy to see that the condition of Lemma holds also for the judgement \((M_i \vDash Q'_i): (A' \vDash \tau'_i) / \Delta' \). Hence, by the induction hypothesis, \(\text{Typify}(M_i) \) succeeds and \(\exists E_i \in \text{Expansion} \), s.t. \(A'_i = [E_i]A_i \) and \(\tau'_i = [E_i] \tau_i \) (5). By (3) and (5), the first part of Lemma’s statement is proved. Let \(E = \{ e_0 := E_i \} \). By (3), (4) and (5), \([E]A' = \{ e_0 := E_i \} [e_0A_i(x) \rightarrow e_0\tau_i] = ([E_i])A_i(x) \rightarrow [E_i] \tau_i = (A'(x) \rightarrow \tau'_i) = \tau' \), which is to be proved.

3b. In the last step of the inference of the judgement \((M \vDash Q'): (A' \vDash \tau') / \Delta' \) the rule [E-VAR] or the rule [INT] is used. The proof is similar to the proof of point 1b.

4. Let \(M = (M_i, M_j) \). We will not present the proof of this case.

Lemma 2.7. Let \(M \in \text{Term} \) and \(M \in \beta \cdot \text{NF} \). Then if \((A \vDash \tau) = \text{Typify}(M)\), then:

1. \(\exists E \in \text{Expansion} \), s.t. \(A' = [E]A \) and \(\tau' = [E] \tau \).
2. If in the last step of inference of the judgement \((M \vDash Q'): (A' \vDash \tau') / \Delta' \) one of the rules [VAR], [CONST], [ABS] or [APP] is used, then \(E = \omega \) or \(E \) is a substitution of the following form: \(E = \{ a_0 := \tau_{a_0} \} \) in case of [VAR]; \(E = e \) in case of [CONST]; \(E = \{ e_0 := E_{e_0} \} \) in case of [ABS]; \(E = \{ a_0 := \tau_{a_0}, e_1 := E_{e_1}, e_2 := E_{e_2} \} \) in case of [APP].

Proof. The proof is very similar to the proof of Lemma 2.6.

Now let us present the main theorem on the principal typing of a term.

Theorem 2.1. Let \(M \in \text{Term} \) and \(M \in \beta \cdot \text{NF} \), s.t. \(M \vdash \beta M' \) and \(M' \in \beta \cdot \text{NF} \).

1. If there exists a typing of term \(M' \) such that during the inference of the corresponding judgement the rule [OMEGA] is not used, then \(\text{Typify}(M) \) succeeds.

2. If \((A \vDash \tau) = \text{Typify}(M)\), then \((A \vDash \tau)\) is the principal typing of term \(M \).

Proof. Let \(\Delta = \text{constraint}(\text{initial}(M)) \) and \(\Delta' = \text{constraint}(\text{initial}(M')) \). By Lemma 2.12 of [1], \(\text{Unify}(\Delta) = [\text{Unify}(\Delta')][\sigma] \), where \(\sigma = [\sigma_1, \ldots, \sigma_m] \), \(m \geq 0 \), are created by the rule unify \(\beta \) during the work of the unification algorithm for input \(\Delta \). Hence, by definition of the type inference algorithm, both \(\text{Typify}(M) \) and \(\text{Typify}(M') \) are simultaneously executed or fail.

1. Because there exists a typing of term \(M' \) such that during the inference of the corresponding judgement the rule [OMEGA] is not used, then
due to Lemma 2.6, Typify(M') succeeds ⇒ Typify(M) succeeds as well, which is proves the first part of the Theorem.

2. We have that (A∈τ)=Typify(M). By Lemma 2.6 of [1], each application of the rule unifyβ corresponds to one step of β-reduction. Hence,

\[\exists M_1, \ldots, M_m \in \text{Term}, \text{ such that } M=M_0 \rightarrow_\beta M_1 \rightarrow_\beta \cdots \rightarrow_\beta M_m=M', A_j=[\sigma_j]A_{j-1}, \]

\[\tau_j=[\sigma_j]\tau_{j-1}, \text{ where } A_j=\text{env}(\text{initial}(M_j)) \text{ and } \tau_j=\text{type}(\text{initial}(M_j)), j=1, \ldots, m, \]

\[j=0, \ldots, m \quad (2). \]

(1),(2) ⇒ A_m=\text{env}(\text{initial}(M'))=[\sigma_j]A_0=[\sigma_j]A \text{ and } \tau_m=\text{type}(\text{initial}(M'))=[\sigma_j]\tau_0=[\sigma_j]\tau \quad (3). \]

By (1) and (3), (A∈τ)=Typify(M)=([\text{Unify(Δ)}]σ[A, h[[\text{Unify(Δ)}]σ]τ_0])=[[\text{Unify(Δ)}]σ][A, h[[\text{Unify(Δ)}]σ]τ_0])=[([\text{Unify(Δ)}]A, h[[\text{Unify(Δ)}]σ]τ_0])=

=([\text{Unify(Δ)}]A, h[[\text{Unify(Δ)}]σ]τ_0])=Typify(M') \quad (4). \]

Let (A∈τ') is a typing of term M. By Lemma 2.5, (A∈τ') is also a typing of term M'∈β-NF. Hence by (4) and Lemma 2.7, \(\exists E \in \text{Expansion}, \text{ s.t. } A'=E[A] \text{ and } \tau'=[E]\tau, \) which means that Typify(M) is the principal typing of term M.

Remark 2.1. The type inference algorithm returns the principal typing of a term that has a β-normal form, except for the situations, when it is impossible to type a β-normal form of the given term without using the rule [OMEGA]. For terms that do not have a β-normal form the type inference algorithm never returns.

Received 06.04.2009

REFERENCES

VACUUM FLUCTUATIONS IN COSMOLOGICAL MODELS WITH COMPACTIFIED DIMENSIONS

A. L. MKHITARYAN

Chair of Theoretical Physics, YSU

We study quantum effects of scalar fields in cosmological models of Friedman–Robertson–Walker with a power-law scale factor and spatial topology $R^p \times (S^1)^q$. Recurrent formulae are obtained for positive-frequency Wightman function, vacuum expectation values of the field squared and energy density.

Keywords: cosmology, vacuum fluctuations, Kaluza-Klein theories.

1. Introduction. It is expected that in string theory the most natural topology for the universe is that of a flat compact three-manifold [1]. In inflationary scenario universes with compact spatial dimensions, under certain conditions, should be considered a rule rather than an exception [2]. The models of a compact universe with nontrivial topology may play an important role by providing proper initial conditions for inflation (on the cosmological consequences of the non-trivial topology and observational bounds on the size of compactified dimensions see, for example, [3]). The quantum creation of the universe with toroidal spatial topology is discussed in [4–8] within the framework of various supergravity theories. Vacuum expectation values of the field squared has been considered in the previous work [9].

The compactification of spatial dimensions leads to the modification of the spectrum of vacuum fluctuations and, as a result, to Casimir-type contributions to the vacuum expectation values of physical observables (on the topological Casimir effect and its role in cosmology see [10] and references therein). The effects of the toroidal compactification of spatial dimensions in dS space-time on the properties of quantum vacuum for a scalar field with general curvature coupling parameter are investigated in [11]. The one-loop quantum effects for a fermionic field on background of dS space-time with spatial topology $R^p \times (S^1)^q$ are studied in [12]. In the present paper we investigate the effect of the compactification of one of spatial dimensions in the Friedmann–Robertson–Walker (FRW) cosmological models with power-law scale factor. For a scalar field with general curvature coupling parameter we evaluate the vacuum energy density.

* E-mail: aram.mkhitaryan@googlemail.com
In this paper we consider the Wightman function for the background FRW space-time with topology $\mathbb{R}^p \times (S^1)^q$. We decompose this function in two parts: the first one is the corresponding function for the uncompactified FRW space-time, and the second one is induced by the compactness of the spatial dimensions. We use the Wightman function for the evaluation of the vacuum energy density. As the part corresponding to the uncompactified FRW space-time is well-investigated in literature, we are mainly concerned with the topological part. The asymptotic behavior of the latter is investigated in detail in early and late stages of the cosmological evolution.

2. Wightman Function in FRW Space-time With Compact Spatial Dimensions.

We consider a quantum scalar field with curvature coupling parameter ξ on background of the $(D+1)$-dimensional FRW space-time. The field equation has the form

$$\left(\nabla_i \nabla^i + m^2 + \xi R \right) \phi = 0,$$

where ∇_i is the covariant derivative operator. The values of the curvature coupling parameter $\xi = 0$ and $\xi = \xi_D = (D-1)/4D$ correspond to the most important special cases of minimally and conformally coupled fields. We will write the corresponding line element in the form most appropriate for cosmological applications:

$$ds^2 = dt^2 - a^2(t) \sum_{i=1}^{D} (dz^i)^2, \quad a(t) = \alpha t^c.$$

(2)

For the further discussion, in addition to the synchronous time coordinate t it is convenient to introduce the conformal time τ in accordance with

$$t = [(1-c)\tau]^{1/(1-c)}, \quad a(t) = \alpha [(1-c)\tau]^c.$$

(3)

Note that $0 \leq \tau < \infty$ for $0 < c < 1$, and $-\infty < \tau \leq 0$ for $c > 1$. In terms of this coordinate the line element takes conformally flat form:

$$ds^2 = \Omega^2(\tau) \left[d\tau^2 - \sum_{i=1}^{D} (dz^i)^2 \right], \quad \Omega^2(\tau) = \alpha^2 [(1-c)\tau]^{2c/(1-c)},$$

(4)

and the corresponding Ricci scalar has the form

$$R = \frac{Dc [(D+1)c - 2]}{[\alpha(1-c)\tau]^{4/(1-c)}}.$$

(5)

We will assume that the spatial coordinates z^l, $l = D_1 + \ldots, D_3$, are compactified to S^1: $0 \leq z^l \leq L_l$, and for the other coordinates we have $-\infty < z^l < +\infty$, $l = 1, \ldots, D_1$. Hence, we consider the spatial topology $R^{D_1} \times (S^1)^{D_2}$. For $D_1 = 0$ as a special case we obtain the toroidally compactified FRW space-time. The results obtained here can be used to describe two types of models. For the first one $D = 4$, and it corresponds to the universe with Kaluza–Klein type single extra dimension. For the second model $D = 3$, and the results given below describe how the properties of the universe are changed by one-loop quantum effects, induced by the compactness of a single spatial dimension.

For a scalar field with periodic boundary condition one has

$$\phi(\eta, z_{D_1}, z_{D_2} + L_{D_2}) = \phi(\eta, z_{D_1}, z_{D_2}), \quad \text{where} \ \eta = |\vec{z}|^2, \quad z_{D_1} = (z^1, \ldots, z^{D_1}), \quad z_{D_2} = (z^{D_1+1}, \ldots, z^{D_2}).$$
In this paper we are interested in the effects of non-trivial topology on the vacuum expectation value (VEV) of the energy density. This VEV is obtained from the corresponding Wightman function in the coincidence limit of the arguments.

To evaluate the Wightman function we employ the mode-sum formula

$$G^+_{p,q}(x,x') = \langle 0 \| \phi(x) \phi(x') \| 0 \rangle = \sum_\sigma \phi_\sigma(x) \phi^*_\sigma(x'),$$

(6)

where \(\{ \phi_\sigma(x), \phi^*_\sigma(x) \} \) is a complete set of positive and negative frequency solutions to the classical field equation and satisfying the periodicity condition along the compactified dimension. The collective index \(\sigma \) specifies these solutions. For the problem under consideration and in the case of a massless field the eigenfunctions have the form \cite{9}

$$\phi_\sigma(x) = C_\sigma \eta^b H^{(2)}_\nu(k\eta)e^{ik_\sigma z} + \delta_{\nu,0} c_\sigma \delta(k\sigma z),$$

(7)

with the notations

$$k_{D_1} = (k_1, \ldots, k_{D_1}), \quad k_{D_2} = (k_{D_1+1}, \ldots, k_{D}), \quad k = \sqrt{k_{D_1}^2 + k_{D_2}^2},$$

$$k_l = 2\pi n_l/L_l, \quad n_l = 0, \pm 1, \pm 2, \ldots, \quad l = D_1 + 1, \ldots, D,$$

$$b = \frac{1}{2} \frac{cD-1}{c-1},$$

(8)

and the order of the Hankel function \(H^{(2)}_\nu(x) \) is defined by the relation

$$\nu = \frac{1}{2} \| -c \| (cD-1)^2 - 4\zeta c_\nu [(D+1)c - 2])^{1/2}.$$

(9)

Note that for a conformally coupled field \(\nu = 1/2 \).

The coefficient \(C_\sigma \) with \(\sigma = (k_{D_1}, n_{D_1+1}, \ldots, n_D) \) is found from the orthonormalization condition:

$$-i \int \sqrt{\|} e^{i\theta} \left[\phi_\sigma(x) \phi^*_\sigma(x) - \phi^*_\sigma(x) \phi_\sigma(x) \right] d^{D}x = \delta_{\sigma\sigma'},$$

(10)

where the integration goes over the spatial hypersurface \(\tau = \text{const} \), and \(\delta_{\sigma\sigma'} \) is understood as the Kronecker delta for discrete indices and as the Dirac delta-function for continuous ones. This leads to the result

$$|C_\sigma|^2 = \frac{2^{\alpha^1-D} \pi^{D/2} V_{q}^{D-1}}{2^{p+1} \pi^{D-1} \alpha^D \| c \|^2}, \quad V_q = L_{p+1} \cdots L_D.$$

(11)

Substituting the eigenfunctions (7) with the normalization coefficient (11) into the mode-sum formula for the Wightman function, one finds

$$G^+_{p,q}(x,x') = \frac{A(\eta^b \eta^b)^{\nu}}{2^p \pi^{p+1} V_{q}} \times$$

$$\times \int \sum_{n_{\sigma',\sigma}} \sum_{z'} e^{i k_{\sigma',\sigma} z'} K_{\nu}(k\eta^b \eta^b \eta^b \eta^b \eta^b \eta^b) K_{\nu}(k\eta^b \eta^b \eta^b \eta^b \eta^b \eta^b) dk_{\sigma',\sigma},$$

(12)

where \(\Delta z' = z' - z'' \), \(k = \sqrt{k_{\sigma,\sigma'}^2 + k_{\sigma',\sigma}^2 + k_{\sigma',\sigma}^2} \) and

$$A = \alpha^{1-D} \left(\| -c \| \right)^{D-1} \pi \langle k \rangle^{c-1}.$$
In (12) we wrote the Hankel function in terms of the MacDonald function $K_v(z)$. It can be seen that after the application of the Abel–Plana summation formula [10, 13] to the series over n_{p+1}, the following recurrence formula is obtained:

$$G_{p,q}^+(x,x') = G_{p+1,q-1}^+(x,x') + \Delta_{p+1} G_{p,q}^+(x,x'),$$

where the first term on the right is the Wightman functions in the FRW space-time with $p+1$ uncompactified and $q-1$ toroidally compactified dimensions, and the second term is induced by the compactness of the z^{p+1}-direction and is given by the formula

$$\Delta_{p+1} G_{p,q}^+(x,x') = \frac{A(\eta \eta')}{(2\pi)^{p+1}} \int_{-\infty}^{\infty} e^{i k \cdot z'} \sum_{n_{p+1}=-\infty}^{\infty} e^{i k \cdot x'} \frac{1}{\sqrt{y^2 + k_p^2 + k^2_{n_{p+1}}}} \times$$

$$\times \left(\frac{\cosh(\Delta z^{p+1})}{\sqrt{y^2 + k_p^2 + k^2_{n_{p+1}}}} \right) \times$$

$$\times \{ K_v(\eta \eta') \left[I_{\pm}(\eta' y) + I_+ (\eta' y') \right] + \left[I_{\pm} (\eta y) + I_+ (\eta y') \right] K_v(\eta y') \} dy,$$

where $V_{q-1} = L_p \cdots L_{D-1}$ and the notation

$$k_{n_{p+1}}^2 = \sum_{\nu=1}^{\nu=2} (2\pi n_{p+1} L_{\nu})^2$$

is introduced. Note that in this formula the integration with respect to the angular part of k_p can be done explicitly.

3. Vacuum Energy Density. Now we turn to the investigation of the VEV for the vacuum energy density. Using the Wightman function we can evaluate this VEV by making use of the formula [14]

$$\langle 0 | T_{00} | 0 \rangle = \lim_{x \rightarrow x} \epsilon_{00} G_0^+(x, x') + \left[(\xi - \frac{1}{4}) g_{00} \nabla^2 - \xi g_{00} \nabla^2 - \xi R_0 \right] \langle 0 | \varphi^2 | 0 \rangle,$$

where R_0 is the Ricci tensor for the FRW space-time with the 00-component

$$R_0^0 = \frac{D c \Omega^2}{1-c} \frac{1}{r^2},$$

As in the case of the Wightman function, the renormalized VEV of the energy density is presented as the sum

$$\langle T_0^0 \rangle_{p,q} = \langle T_0^0 \rangle_{p+1,q-1} + \Delta_{p+1} \langle T_0^0 \rangle_{p,q},$$

where the part due to the compactness of the z^{p+1}-direction is given by the expressions

$$\Delta_{p+1} \langle T_0^0 \rangle_{p,q} = \frac{2^{(1-p)} \Gamma(d) \Omega^2}{\pi^{d/2} \Gamma^{(p+1)}} \int_{-\infty}^{\infty} y^{d/2} \sum_{n_{p+1}=-\infty}^{\infty} \frac{F_{p+1}(nL_{p+1} y^2 + k_{n_{p+1}}^2)}{(nL_{p+1} y^2)^{d/2}} F(\eta y) dy,$$

with the notation.
\[F^{(0)}(z) = \frac{1}{2} \tilde{F}(z) \tilde{K}(z) + \frac{D \xi c}{z(1-c)} \left(\tilde{f}(z) \tilde{K}(z) \right) - \frac{1}{2} \left[1 + D \xi c \frac{4-(D+3)c}{z^2(1-c)^2} \right] \tilde{f}(z) \tilde{K}(z) \].

In (20) we have defined the functions
\[
\tilde{f}(x) = x^K \bar{K}(x), \quad \tilde{K}(z) = z^K K(z), \quad \tilde{I}(z) = z^K [I(z) + I_0(z)].
\]

After the recurring application of formula (18), the vacuum energy density in FRW model with spatial topology \(\mathbb{R}^p \times S^1 \) is presented in the form
\[
\langle T^{(0)}_0 \rangle_{p,q} = \langle T^{(0)}_0 \rangle_{FRW} + \langle T^{(0)}_0 \rangle_{c},
\]
where \(\langle T^{(0)}_0 \rangle_{FRW} \) is the corresponding quantity for uncompactified FRW space-time and the part
\[
\langle T^{(0)}_0 \rangle_{c} = \sum_{l=1}^{D} \Delta_{D-l+1} \langle T^{(0)}_0 \rangle_{D-l},
\]
is induced by the toroidal compactification of the \(q \)-dimensional subspace.

For a conformally coupled massless scalar field one has \(\nu = 1/2 \) and \(\left[I_\nu(x) + I_{-\nu}(x) \right] K_\nu(x) = \Psi(x) \). For the function \(F^{(0)}(z) \) we have:
\[
F^{(0)}(z) = z^{2\nu-3} \left[\frac{c(1-D)}{2(1-c)} - z^2 \right].
\]

Using the formula
\[
\int_0^\infty f_{(p-1)E} \left(\alpha \sqrt{z^2 + b^2} \right) dz = \sqrt{\frac{\pi}{2}} \frac{f_{pF2}(ab)}{a},
\]
for the case of a conformally coupled field we find
\[
\Delta_{p+1} \langle T^{(0)}_0 \rangle_{p,q} = -\frac{\sigma^{D-1}}{(2\pi)^{p/2}} \sum_{l=1}^{D} \sum_{n_{l-1}=0}^{\infty} \sum_{n_l=0}^{\infty} \frac{f_{pF2+1}(nL_{p+1}k_{n_{l+1}})}{(nL_{p+1})^{p+2}}.
\]

Formula (25) could also be obtained from the corresponding result in \((D+1) \)-dimensional Minkowski space-time with spatial topology \(\mathbb{R}^p \times S^1, \) taking into account that two problems are conformally related: \(\Delta_{p+1} \langle T^{(0)}_0 \rangle_{p,q} = \sigma^{D-1} \Delta_{p+1} \langle T^{(0)}_0 \rangle_{(M)}^{(M)}. \)

A similar formula takes place for the total topological part.

The general formulas for the topological part in the VEV of the energy density are simplified in the asymptotic regions of the parameters. For small values of the ratio \(L_{p+1}/\eta \) we can see that to the leading order \(\Delta_{p+1} \langle T^{(0)}_0 \rangle_{p,q} \) coincides with the corresponding result for a conformally coupled massless field given by formula (25). Note that in terms of the synchronous time coordinate we have \(L_{p+1}/\eta = \sigma \left| 1 - q \right| L_{p+1} \), and, hence, \(\Delta_{p+1} \langle T^{(0)}_0 \rangle_{p,q} \propto t^{(D+1)} \). Hence, the limit under consideration corresponds to the early stages of the cosmological expansion \((t \rightarrow 0) \) in the case \(c > 1 \) and to the late stages \((t \rightarrow +\infty) \) in the case \(c < 1 \).
For large values of the ratio $\frac{L_{p+1}}{\eta}$ and in the case of real ν, using the asymptotic formulæ for the modified Bessel functions for small values of the argument, to the leading order one has

$$F(0) (z) \approx \frac{\pi^{2\nu-1}}{\Gamma(1-\nu)} \frac{z^{2\nu}}{2\nu-\nu + 2\xi (2\nu - D - 1)}.$$ \hfill (26)

From formula (19) we find

$$\Delta_{p+1} \left(t_0^0 \right)_{\nu,\mu} \approx \frac{2^{2\nu-1} D [D2 - \nu + 2\xi (2\nu - D - 1)]}{(2\pi)^{p+1} \Gamma^2 \eta^{2\nu}} \sum_{n_{\nu+1}} \frac{f_{p+1} \left(nL_{p+1}k_{n_{\nu+1}} \right)}{n^{p+1} l \nu^2}.$$ \hfill (27)

In terms of the synchronous time coordinate one has $\Delta_{p+1} \left(t_0^0 \right)_{\nu,\mu} \sim \frac{2^{2\nu-1} D [D2 - \nu + 2\xi (2\nu - D - 1)]}{(2\pi)^{p+1} \Gamma^2 \eta^{2\nu}} \sum_{n_{\nu+1}} \frac{f_{p+1} \left(nL_{p+1}k_{n_{\nu+1}} \right)}{n^{p+1} l \nu^2}.$ \hfill (28)

where B_0 and ϕ_0 are defined by the relation

$$B_0 e^{i\phi_0} = 2\nu \frac{\Gamma(1/2 - 2\xi)}{\Gamma(1 - i\nu)} \sum_{n_{\nu+1}} \frac{f_{p+1} \left(nL_{p+1}k_{n_{\nu+1}} \right)}{n^{p+1} l \nu^2}.$$ \hfill (29)

This limit corresponds to the late stages of the cosmological expansion ($t \to +\infty$) in the case $c > 1$ and to the early stages ($t \to 0$) in the case $c < 1$.

4. Conclusion. Compactified spatial dimensions appear in various physical models, including Kaluza–Klein type theories, supergravity, string theory and cosmology. In this paper we investigate the quantum vacuum effects in FRW spacetime induced by non-trivial topology of spatial dimensions. We consider a scalar field with general curvature coupling parameter, satisfying the periodic boundary condition along the compactified dimensions. Among the most important characteristics of the vacuum are the VEV of the energy density. Though the corresponding operator is local, due to the global nature of the vacuum this VEV carry an important information on the global structure of the background space-time.

In order to derive formula for the vacuum energy density, we first construct the Wightman function. Using of the Abel–Plana summation formula, we have extracted from this function the part, corresponding to the Wightman function for the uncompactified FRW spacetime. As the topological part is finite in the coincidence limit, by this way the renormalization procedure is reduced to that for the standard FRW case. The latter was already realized in literature [4]. As a result the vacuum energy density is decomposed into FRW and topological parts. For general values of the curvature coupling parameter the corresponding formula is simplified in the asymptotic regions of small and large values of the ratio L_{p+1}/η. In the first case the leading term in the energy density is the same as that for a conformally coupled field, and the topological part behaves like $l^{-\nu(D+1)}$. This limit corresponds to the early stages of the cosmological expansion in the case $c > 1$ and
to the late stages in the case $c < 1$. For large values of the ratio L/L' the behavior of the topological part is different for real and pure imaginary values of the parameter v. In the first case this part behaves like $t^{(D-2v)(1-c)}$, whereas in the second case the decay has an oscillatory nature $t^{D(1-c)} \sin \left(2\pi f/\alpha + \varphi \right)$. This limit corresponds to the late stages of the cosmological expansion when $c > 1$ and to the early stages when $c < 1$.

The work was supported by the Armenian Ministry of Education and Science Grant No. 119.

Received 25.06.2009

REFERENCES
BANDWIDTH AND DURATION OF NONLINEAR-DISPERSIVE SIMILARITON

A. S. ZEYTUNYAN*

Laboratory of Ultrafast Optics and Laser Physics, Chair of Optics, YSU

Studying the spectral peculiarities of nonlinear-dispersive similariton, generated in single-mode optical fiber without gain (passive fiber), we reveal that the bandwidth of such a similariton is conditioned only by the initial pulse power. This property of nonlinear-dispersive similariton can be used for the pulse duration measurements at the femtosecond time scale, alternatively to the autocorrelation technique.

Keywords: fiber, femtosecond pulses, chirp, similariton.

Introduction. Similaritons, the pulses that maintain their temporal profiles during the propagation in fibers, is a modern topic in ultrafast optics. Initially the shaping of pulses with parabolic temporal, spectral and phase profiles for high-intensity pulses was predicted by Anderson et al [1]. Later on, parabolic pulses were generated in fibers with gain or distributed dispersion [2–4]. The parabolic pulses generated in both kinds of fibers with either gain or distributed dispersion maintain their temporal profiles during further propagation beginning from a certain distance. The majority of studies in this field is related to the parabolic similaritons of fibers with gain or distributed dispersion. Recently, a new type of similariton was generated in a passive fiber under the combined impacts of Kerr nonlinearity and dispersion [5]. This nonlinear-dispersive (NL-D) similariton has a parabolic phase (linear chirp) independently of the input pulse characteristics, and bell-shaped spectral and temporal profiles. The chirp factor practically matches with the one for the pure dispersive propagation. To describe the similariton completely the features of its bandwidth and duration are also necessary.

In this work we experimentally study the peculiarities of bandwidth of such similaritons formed in passive optical fibers under the combined impacts of nonlinearity and dispersion. Together with our previous research [5], this study gives the comprehensive description of NL-D similaritons.

Experiment and Results. The objective of our study is the revealing of the spectral broadening regulation for NL-D similariton. In our experiment we shape similaritons from transform-limited and chirped input pulses. We use Coherent Verdi V10–Mira 900F femtosecond laser system with $\tau_0 = 100$ fs pulse duration at

* E-mail: azeytunyan@ysu.am
a 76 MHz repetition rate, $\Delta\lambda_{in} = 10 \text{ nm}$ bandwidth, and central wavelength at $\lambda_0 = 800 \text{ nm}$. The schematic of our experiment is shown in Fig. 1.

We stretch the laser pulse, chirping it positively and negatively in SF11 glasses (G) with different thickness and dispersive delay line (DDL) consisting of two dispersion prisms. The beam splitter (BS) splits the laser radiation into the low- and high-power parts. We direct the low-power part to the autocorrelator APE PulseCheck (AC) to measure the input pulse autocorrelation duration, and the high-power part we inject into the fiber, where the similition is shaped. Afterwards, we measure the bandwidth of similition and the average power of radiation by means of optical spectrum analyzer (OSA Ando 6315). We also carry out the numerical modeling of the process under study, based on the solution of nonlinear Schrödinger equation with the terms of Kerr nonlinearity and group velocity dispersion (adequate to pulse durations of $\geq 50 \text{ fs}$ [6]), using the split-step Fourier method.

![Fig. 1. Schematic of experimental setup.](image)

![Fig. 2. Similariton’s bandwidth versus the square root of its power: (a) – experiment; (b) – numerical simulation for an input Gaussian pulse (the bandwidth $\Delta\omega$ is normalized to the input pulse bandwidth $\Delta\omega_{in}$). + corresponds to the transform-limited pulse with the pulse stretching ratio $s=1$, $\times - s=\sqrt{2}$, $\forall - s=\sqrt{3}$, $\forall - s=\sqrt{4}$ (positive chirp coefficients), $\times - s=\sqrt{5}$, $\forall - s=\sqrt{6}$, and $\Delta - s=\sqrt{10}$ (negative chirp coefficients); $\Delta\omega_{in}=10 \text{ nm}$. The selected section of (b) corresponds to the experimental range of (a).](image)
Fig. 2 shows the experimental (a) and numerical (b) results in comparison with each other. Fig. 2 (a) shows the similariton’s bandwidth $\Delta \lambda$ versus the square root of the pulse power $P=W/\tau_{in}$ (W is the pulse energy). Fig. 2 (b) shows an analogue numerical curve for an input Gaussian pulse. In numerical simulations the bandwidth $\Delta \omega$ is normalized to the input pulse bandwidth $\Delta \omega_{in}$. The experimental and numerical results are in good accordance with each other.

Discussion. NL-D similariton originates from the rectangular pulse shaped due to the pulse NL-D self-interaction in passive fiber [5, 6]. The pulse optimal compression ratio in the regime of rectangular pulses is $\tau_{in}/\tau_c \approx \sqrt{R}/1.8$ [6], where $R = WC^2/(\tau_{in} \Delta \omega_{in}^2)$, τ_{in} and τ_c are the input and compressed pulse durations, $\Delta \omega_{in}$ is the input pulse bandwidth, and $C = \left(\frac{n_2 k_0}{k_2 S}\right)$ is a constant (n_2 is the fiber nonlinearity coefficient, S is the fiber mode area, $k_0 = 2\pi/\lambda_0$ is the wave number, and $k_2 = \partial^2 k/\partial \omega^2$). For a transform-limited input pulse $2\tau_{in}/\tau_c = \Delta \omega/\Delta \omega_{in}$, and thus, $\Delta \omega/\Delta \omega_{in} \approx \sqrt{R}$, where $\Delta \omega$ is the bandwidth of the rectangular pulse in fiber. Numerical studies show that NL-D similariton practically keeps the bandwidth of rectangular pulse, thus, the expression above can be used for it. Thus, for the bandwidth of NL-D similariton we have

$$\Delta \omega_{sim} = C\sqrt{P} \quad (1)$$

where $P = W/\tau_{in}$ is the pulse power. Expression (1) motivates the obtained experimental and numerical results. Note for comparison that the bandwidth of parabolic similariton is $\Delta \omega(z) = \left[\left(\frac{g k_0 n_2 P W}{2k_2^2 S}\right)^{1/3} \exp\left(\frac{g z}{3}\right)\right]$, where g is the gain coefficient and z is the fiber length [3].

This peculiarity of NL-D similariton’s bandwidth can be used for pulse duration measurement at the femtosecond time scale. Since the value of C is given, we can have the pulse duration by measuring its bandwidth and energy.

Since the chirp of NL-D similariton is given by the fiber dispersion $\gamma = \Delta \omega_{sim}/\Delta t = (k_2 z)^{-1}$ [5], for its duration we have

$$\Delta t = z\left(\frac{k_0 k_2 n_2^2 P}{S}\right)^{1/2}\quad (2)$$

Similariton’s duration increases linearly during the propagation. Thus, we can control similariton’s duration and bandwidth by changing the initial pulse power.

Conclusion. Our numerical and experimental studies show that the bandwidth $\Delta \omega$ of NL-D similariton generated in passive fiber depends linearly on \sqrt{P} with the coefficient, given by the fiber parameters only.

The revealed property of NL-D similariton can be used for pulse duration measurements at the femtosecond time scale, alternatively to the autocorrelation technique.

The author acknowledges his scientific supervisor Garegin Yesayan for fruitful discussions and help during the work.

Received 01.12.2009
REFERENCES

In this note two-parametric model, generated by distribution of moderate growth, is considered. The parametric function of unknown parameters, for which there is unbiased, effective estimate, is obtained. The estimate itself is built too.

Keywords: distribution of moderate growth, parameters’ estimation, effective estimate.

1. **Introduction.** In order to obtain an effective estimates for unknown parameter \(\alpha = (\theta, c) \) with parametric set \(A = \{\alpha = (\theta, c) : 0 < \theta \leq 1, c > 0\} \) in two-parametric distribution of moderate growth (1)–(3) of paper [1], replacing \(\ln \left(1 + \frac{c-1}{\psi_k} \right) \) by \((c-1)/\psi_k \) we get the following distribution \(\{p_\alpha(x)\}_{i=0}^\infty \):

\[
\begin{aligned}
p_\alpha(x) &= (g(\alpha))^{-1} \frac{\theta^x}{\psi_x} \exp \left\{ (c-1) \sum_{m=0}^{x-1} \frac{1}{\psi_m} \right\}, \quad x = 1, 2, \ldots, \\
p_\alpha(0) &= (g(\alpha))^{-1} \left(1 + \sum_{m=0}^{x-1} \frac{\theta^x}{\psi_x} \exp \left\{ (c-1) \sum_{m=0}^{x-1} \frac{1}{\psi_m} \right\} \right)^{-1}.
\end{aligned}
\]

(1.1)

The moderate growth is defined by conditions:

\[
\psi_0 = 1, \{\psi_k\}_{k=0}^\infty \text{ increases, } \lim_{x \to +\infty} \frac{\psi_k}{\psi_{k-1}} = 1, \quad S_\psi = \sum_{x=1}^\infty \left(\psi_k \right) < +\infty. \quad (1.2)
\]

We build the model (1.1)–(1.2), because the distribution \(\{p_\alpha(x)\}_{i=0}^\infty \) of random variable (RV) \(\xi \geq 0 \) belongs to two-parametric exponential class, i.e. the representation holds (see [2])

\[
p_\alpha(x) = h(x) \exp \left\{ \sum_{i=1}^2 A_i(\alpha) \cdot T_i(x) + B(\alpha) \right\}, \quad (1.3)
\]

where all functions are finite and measurable with respect to corresponding variables. Namely, in our case

\[
h(x) = (\psi_x)^{-1} \exp \{-S_\psi(x)\}, \quad T_1(x) = x, \quad T_2(x) = S_\psi(x), \quad A_1(\alpha) = \ln \theta, \quad A_2(\alpha) = c.
\]

* E-mail: Hovhannisyan@list.ru
$B(\alpha) = - \ln g(\alpha)$. Here we denote $S_\psi(x) = \sum_{m=0}^{\infty} (\psi_m^\prime \psi_m)$.

The belongings to exponential class allows, based on known facts of Mathematical Statistics, to find the unique parametric function $\tau(\alpha) = (\tau_1(\alpha), \tau_2(\alpha))$, which has unbiased, effective estimate $\tau^* = (\tau_1^*, \tau_2^*)$ for distribution (1.1)–(1.2).

Let $X^n = (X_1, X_2, \ldots, X_n)$ be a sample of size $n > 1$ of RV X, $\overline{X}^n = \frac{1}{n} \sum_{i=1}^{n} X_i$, $\overline{S}_\psi(X^n) = \frac{1}{n} \sum_{i=1}^{n} S_\psi(X_i)$. Note that the statistics $\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} S_\psi(X_i)$ is complete, sufficient statistics for two-dimensional parameter $A(\alpha) = (\ln \theta, c)$. It follows from the form of likelihood function $p_{\alpha}(x_1) \cdots p_{\alpha}(x_n)$ of distribution (1.1)–(1.2) and from the Lehmann Theorem ([2], p.146). Then, due to Lehmann–Sheffe Theorem 2 (see, [3], p. 74), the introduced statistics is unbiased, optimal estimate for parametric function $\tau(\alpha) = (E_{a_1} \xi, E_{a_2} S_\psi(\xi))$, where E denotes the sign of mathematical statistics. The effective estimate is also optimal. But the reverse statement, generally speaking, is not true. Anyway, in our case the optimal estimate is also effective, which establishes the following

Theorem. For distribution (1.1)–(1.2) there is the unique parametric function, which has unbiased, effective estimate τ^*. Moreover, $\tau(\alpha) = (E_{a_1} \xi, E_{a_2} S_\psi(\xi)), \tau^* = (\overline{X}^n, \overline{S}_\psi(X^n))$. (1.4)

2. Method of Analysis. Introduce the following **Conditions (R):**

a) $p_{\alpha}(x)$ is continuously differentiable by $\alpha \in A$ for any $x = 0, 1, 2, \ldots$

b) The set $\{x \in R : p_{\alpha}(x) > 0\}$ doesn’t depend on α.

c) Denote $I_{i,j}(\alpha) = E_{a_i} \left(\frac{\partial \ln p_{\alpha}(X_i)}{\partial \alpha_j} \cdot \frac{\partial \ln p_{\alpha}(X_j)}{\partial \alpha_i} \right), i, j = 1, 2, \alpha_1 = \theta, \alpha_2 = c$. Then the matrix $I(\alpha) = (I_{i,j}(\alpha))$ is continuous by α and det $I(\alpha) \neq 0$. Denote $A(\alpha) = (A_1(\alpha), A_2(\alpha)), A_{i,j}(\alpha) = \partial A_i(\alpha)/\partial \alpha_j, i, j = 1, 2, \quad B(\alpha) = \left\{ \frac{\partial B(\alpha)}{\partial \alpha_i}, \frac{\partial B(\alpha)}{\partial \alpha_2} \right\}$ Then

$$A(\alpha) = (A_1(\alpha), A_2(\alpha)) = \frac{\partial A(\alpha)}{\partial \alpha}, i, j = 1, 2, \quad B(\alpha) = \left\{ \frac{\partial B(\alpha)}{\partial \alpha_i}, \frac{\partial B(\alpha)}{\partial \alpha_2} \right\}$$

Then

$$A'(\alpha) = (A_{i,j}(\alpha)) = \begin{bmatrix} 1 & \theta \\ 0 & 1 \end{bmatrix}, \quad A'(\alpha)^{-1} = \begin{bmatrix} \theta & 0 \\ 0 & 1 \end{bmatrix}$$

is reverse to $A(\alpha)$ matrix,

$$\frac{\partial B(\alpha)}{\partial \alpha_i} = -\frac{1}{g(\alpha)} \frac{\partial g(\alpha)}{\partial \theta} = -\frac{1}{\theta} E_{a_1}(\xi), \quad \frac{\partial B(\alpha)}{\partial \alpha_2} = -\frac{1}{g(\alpha)} \frac{\partial g(\alpha)}{\partial c} = -E_{a_2} S_\psi(\xi).$$

The proof of Theorem is based on following known fact for exponential class (see, for instance, [2], p. 158), satisfying Condition (R):

The unique parametric function $\tau(\alpha)$, which has unbiased, effective estimate, and the estimate τ^* itself, are defined from conditions

$$\tau(\alpha) = -B'(\alpha) \cdot (A'(\alpha))^{-1}, \quad \tau^* = (n^{-1} S_1, n^{-1} S_2), \quad \text{where} \quad S_j = \sum_{i=1}^{n} T_j(X_i), j = 1, 2.$$
Due to definition, τ^* is effective estimate for $\tau(\alpha)$ if the equality holds

$$D_\alpha \tau^* = \frac{1}{n} D(\alpha) \cdot \Gamma^{-1}(\alpha) \cdot D(\alpha)^T$$

(2.3)

Here $D_\alpha \tau^* = E_\alpha (\tau^* - \tau(\theta))^T \cdot (\tau^* - \tau(\theta))$, $\tau_j(\alpha) = \frac{\partial \tau(\alpha)}{\partial \alpha_j}$, $i, j = 1, 2$,

$D(\alpha) = (\tau_j(\alpha))$, T denotes the transposition sign, $\Gamma^{-1}(\alpha)$ is the matrix reverse to $I(\alpha)$.

Thus, the proof of Theorem consists in: verification of Conditions (R): evaluation of (2.2) and transformation of (2.2) to the form (1.4); verification of equality (2.3).

3°. Proof of Theorem. Due to (2.1) and (2.2), easily verified that (2.2) and (1.4) coincide. Next, according to [2] (p. 158)

$$D_\alpha \tau^* = \frac{1}{n} D(\alpha)(A'(\alpha))^{-1}.$$

(3.1)

Since $\tau_{11}(\alpha) = \theta^{-1} D_\alpha \xi, \tau_{12}(\alpha) = \text{cov}_\alpha (\xi, S_\psi(\xi)), \tau_{21}(\alpha) = \theta^{-1} \text{cov}_\alpha (\xi, S_\psi(\xi)), \tau_{22}(\alpha) = D_\alpha S_\psi(\xi)$, where D is the sign of variation, cov – the sign of covariation, therefore, (3.1) takes the form

$$D_\alpha \tau^* = \frac{1}{n} \begin{bmatrix} D_\alpha \xi & \text{cov}_\alpha (\xi, S_\psi(\xi)) \\ \theta^{-1} \text{cov}_\alpha (\xi, S_\psi(\xi)) & D_\alpha S_\psi(\xi) \end{bmatrix}.

(3.2)

On the other hand (see [2], p. 159),

$$I(\alpha) = D(\alpha)^T A'(\alpha) = \frac{1}{\theta} \begin{bmatrix} D_\alpha \xi & \text{cov}_\alpha (\xi, S_\psi(\xi)) \\ \text{cov}_\alpha (\xi, S_\psi(\xi)) & \theta \cdot D_\alpha S_\psi(\xi) \end{bmatrix}.

(3.3)

Due to (3.2), (3.3), the estimate (1.4) is effective. It remains to verify the fulfillment of Condition (R). Obviously, (a) and (b) take place. From Coughy–Shwartz Inequality we have

$$\det I(\alpha) = \frac{1}{\theta^2} \left(D_\alpha \xi \cdot D_\alpha S_\psi(\xi) - \text{cov}_\alpha (\xi, S_\psi(\xi)) \right) > 0.$$

Thus, the condition (c) is fulfilled too.

The theorem is proved.

Received 22.12.2009

REFERENCES

ON THE RABIN’S SPEED-UP OF PROOFS FOR SOME SYSTEMS OF FIRST ORDER LOGIC

A. A. CHUBARYAN*, H. R. BOLIBEKYAN**

Chair of Discrete Mathematics and Theoretical Computer Science, YSU

In the paper a notion of ordinary theory is considered. It is proved that some systems of first order predicate calculus are ordinary. This property is used for a proof complexity comparison in the considered systems.

Keywords: speed-up, proof complexity, predicate calculus, ordinary theory.

It is well known that investigations of proof complexities in propositional systems are very important due to their tight relation to the main problem of complexity theory: do the classes \(P \) and \(NP \) coincide? Besides, there is a close relation between the proof complexities in bounded arithmetic and propositional logic. Therefore it is useful to conduct comparative analysis of different formal systems to discover existing relations between them. Researchers in this particular area were used to divide systems to “stronger” and “weaker” ones. During the investigations in this direction it becomes very interesting to research the speed-up phenomena caused by existence of “stronger” formal theories. There are many results in this particular area. Some of them relate to the length of proofs, others — to the number of steps in proofs.

In some results a formula with speed-up is pointed out [1], in others — an infinite set of formulas the proof of which possesses the speed-up property [2]. We introduce such a generalization of the proof complexity notion that traditional characteristics of proof complexities – the number of steps and the length of the proof, satisfy our definition. Moreover, we consider such pairs of formal theories, for which the proof speed-up phenomena may be regarded as an analogue of Rabin’s calculation speed-up. In the work we use the ordinary theory notion introduced in [3].

Definition 1. The theory \(\Phi \) is called ordinary if there is a pair of recursively enumerable and effectively inseparable formula sets \(M_\Phi^e \) and \(M_\Phi^\in \) of theory \(\Phi \) and two algorithms \(A_1 \) and \(A_2 \), which for each formula \(\alpha \) from \(\Phi \) produce, respectively, formulas \(A_1(\alpha) \) and \(A_2(\alpha) \), such that the following conditions hold:

* E-mail: achubaryan@ysu.am
** E-mail: bolibekhov@ysu.am
1. \(\alpha \in M_+^\phi \), iff \(\vdash_{\phi} A_1(\alpha) \) and \(\alpha \in M_-^\phi \), iff \(\vdash_{\phi} A_2(\alpha) \);

2. For any formula \(\beta \) of \(\Phi \) if \(\vdash_{\phi} \beta \lor A_1(\alpha) \) and \(\vdash_{\phi} A_1(\alpha) \), then \(\beta \in M_+^\phi \).

It is necessary to stress the main purpose of introducing the special notion of ordinary theory. If sets of provable and disprovable formulas of some formal theory form a pair of effectively inseparable enumerable sets then such a theory is an ordinary one. Different formal systems of full arithmetic and Robinson’s arithmetic are examples of such theories. Indeed, in this case as a pair of recursively enumerable effectively inseparable formula sets \(M_+^\phi \) and \(M_-^\phi \) it’s enough to take, correspondingly, the set of provable and disprovable formulas, and as algorithms \(A_1(\alpha) \) and \(A_2(\alpha) \) — such ones, that \(A_1(\alpha) = \alpha \) and \(A_2(\alpha) = -\alpha \).

However, in case of predicate calculus the situation is quite different: sets of provable and disprovable formulas are recursively separable, for instance, by set of formulas identically true in classical sense on two-item models. Ordinarily of predicate calculus is can be proved by the well-known method of embedding Robinson’s arithmetic into the predicate calculus (see, for example, [4]). The notion of ordinary theory is important for studying the speed-up.

Further we consider such pairs of formal systems, one of which is derived from the other one by adding a formula not provable in the first formal system.

Definition 2. Theory \(\Psi \) is said to be an extension of theory \(\Phi \) (denoted as \(\Psi \supseteq \Phi \)), if any formula of \(\Phi \) and any proof in this system are, respectively, a formula and a proof in the theory \(\Psi \).

A notion of proof complexity is introduced in [3] by analogy with Blum’s general concept of calculation complexity.

Definition 3. Denote by \(C_{\phi}(\alpha) \) the minimal proof complexity of formula \(\alpha \) in the system \(\Phi \), where \(C(\alpha) \) is such a general recursive function that for each \(n \) the equation \(C(\alpha) = n \) has only finite number of solutions and there is an algorithm that generates the set of all solutions of this equation for every \(n \).

The following statement was proved in [3].

Main Theorem. Let \(\Phi_1 \) be an ordinary theory, \(\alpha \) be such a formula of \(\Phi_1 \) that \(\alpha \not\in M_+^\phi \) and \(\alpha \not\in M_-^\phi \). Further let \(\Phi_2 \) be such an extension of \(\Phi_1 \) that \(\vdash_{\phi_2} \alpha \). Then for every general recursive function \(f \) there is such a number \(n_0 \) that for any \(n \), greater than \(n_0 \), there is such a formula \(\alpha_n \) that \(C_{\phi_1}(\alpha_n) \leq n \) and \(C_{\phi_2}(\alpha_n) > f(n) \).

The proof of this theorem is based on a difficult digitalization method allowing to construct the necessary formula for every \(n > n_0 \).

It is proved in [3] that if \(\Phi_1 \) and \(\Phi_2 \) are such arithmetical or Hilbert type pure predicate systems, that \(\Phi_1 \supseteq \Phi_2 \), then the statement of the Theorem holds. We show that for some new systems of pure predicate calculus the result holds as well.

Let \(HP_C, HP_M, SP_C, SP_M, NP_C, NP_M, SP^+, SP^-, RP_C, RP_M, RP_S \) be Hilbert-type \((H)\), sequent \((S)\), natural \((N)\), cut-free sequent \((S^-)\) and resolution \((R)\) systems of pure predicate calculus, respectively, based on
classical (C), intuitionistic (I) and minimal (M) logic. Hilbert type systems, sequent systems and cut-free sequent systems for classical and intuitionistic logics are well-known (see, for example, [4]). Natural and resolution systems for intuitionistic logic are defined in [5], other systems are defined in [6, 7]. It is easy to see that all these theories are ordinary in the meaning defined earlier and the statement of the Main Theorem is also valid for every pair \(\Phi_1 \) and \(\Phi_2 \) of the above mentioned systems, for which \(\Phi_1 \supseteq \Phi_2 \). But we can also prove the Main Theorem for other pairs.

Definition 4. Theory \(\Psi \) is a strong extension of theory \(\Phi \) (denoted as \(\Psi \supseteq \Phi \)), if for any object (formula, sequence, formula set) provable (refutable) in \(\Phi \) a corresponding provable (refutable) object may be pointed out in \(\Psi \).

Theorem. Let \(\Phi_1 \) be an ordinary theory and \(\alpha \) be such a formula of \(\Phi_1 \) that \(\alpha \in M^\Phi_1 \) and \(\alpha \notin \Phi_1 \). Assume that \(\Phi_2 \) is a strong extension of \(\Phi_1 \), and there exists an algorithm that for every proof or refutation in \(\Phi_1 \) constructs a proof or refutation of the corresponding object in \(\Phi_2 \). Then for every general recursive function \(f \) there is such a number \(n_0 \) that for any \(n \), greater than \(n_0 \), there is a formula \(\alpha_n \), such that \(C_{\Phi_2}(\alpha_n) \leq n \) and \(C_{\Phi_1}(\alpha_n) > f(n) \).

Corollary. The statement of Main Theorem holds for every pair of the above mentioned systems with lower indices \(M \) and \(I \), \(M \) and \(C \), \(I \) and \(C \).

The proof follows from the Main Theorem and the results from [5–7], where the algorithms producing the proof in some system based on a proof given in another system are constructed.

Summarizing the said above, one can conclude that for a quite wide classes of formulas the proof complexities in “weaker” systems can be much higher than the proof complexities of same formulas in “stronger” formal systems.

Received 16.10.2009

REFERENCES

A COMBINED EFFECT OF ELECTROSTATIC FIELD AND HYDROSTATIC PRESSURE ON THE STABILITY OF BILAYER LIPID MEMBRANES

H. K. GEVORGYAN
Chair of Molecular Physics, YSU

The paper is devoted to the experimental research of bilayer lipid membranes stability (BLM) at joint action of an electrostatic field and hydrostatic pressure. It is shown, that with increase in a potential difference on BLM the average time of a life of a membrane decreases. Presence of hydrostatic pressure increasing leads to additional reduction of average time of the membrane life.

Keywords: BLM, lifetime, difference of potential, hydrostatic pressure.

The issue of cell membrane stability is central in membranology [1]. The extreme complexity of cell membranes urges to study this problem using a model, a bilayer lipid membrane (BLM). As known, the membrane is often impacted both by electric forces and hydrostatic pressure [2]. For this reason studying a combined effect of electrostatic field and hydrostatic pressure on BLM is of interest. This experiment is a based research focused on a combined effect of hydrostatic pressure and transmembrane potential difference on the BLM stability. As a parameter characterizing the level of stability of BLM, we assumed a lifetime of BLM at specified values of electrostatic field and hydrostatic pressure [3].

Research and results. The experiments were performed on BLM obtained from phosphatidylserine, earlier suspended in nonane. BLM was formed by the method of Muller et al. [4] on a hole with a 1 mm diameter in a PTFE (polytetrafluorethylene) cell. On the both sides of the membrane 0,1 M NaCl solution (pH=6,1) was positioned. All the experiments ran at 20°C. The potential difference was applied to BLM by chlorine-silver electrodes, connected to ADT (NI USB-6008) and regulated by computer. The voltage varied between 150 and 350 mV with a pace 50 mV. Hydrostatic pressure was reached adding NaCl solution to one of two compartments of the cell. The BLM lifetime was determined applying a computer program.

In the first instance, in mean lifetime of BLM change was studied depending on the voltage increase in the absence of hydrostatic pressure (Fig., curve 1). As seen from Fig., the effect of electrostatic field brings to a drastic mean lifetime reduction. The loss of BLM stability in electric field is connected with formation of through hydrophilic pores [3, 5]. Pores in BLM arise spontaneously, and then as

* E-mail: gevhaygo@mail.ru
a result of a random change in size, reach some critical size, after which the BLM
looses its stability. Mean lifetime of BLM exponentially reduces with an increase
in transmembrane voltage \[6, 7\].

Then we studied the impact of the potential difference on the mean lifetime
of BLM in the presence of given hydrostatic pressure \(p = 12,64 \text{ Pa}\) (Fig., curve 2).
This figure demonstrates that dependence of mean lifetime of BLM on potential
(curves 1 and 2) is similar. However, the second curve runs lower, which means
that the mean lifetime of BLM reduces at hydrostatic pressure.

The loss of BLM stability under hydrostatic pressure can be predetermined
by change either in BLM tension \[8\] or in the number of malformations on BLM
\[6\]. To find out which of the two factors predetermines the loss of BLM stability,
let's fit the experimental data with equations for the mean lifetime of BLM \[6\],
employing a least-squares technique:

\[
\ln T(\varphi) = A + \frac{B}{1 + \frac{C \varphi^2}{2\sigma}},
\]

where \(A = \ln \left(\frac{(kT)^2}{4\pi nD\gamma} \left(\frac{\sigma + \frac{C \varphi^2}{2}}{\sigma}\right)^2\right)\),
\(B = \frac{\pi \gamma^2}{\sigma kT} \cdot \frac{1}{2}\sigma kT\),
\(\sigma\) is the surface tension of BLM \((\sigma = 2 \cdot 10^{-3} \text{ N/m} \ [5])\);
\(\gamma\) is the linear
tension of a pore edge in BLM; \(n\) is the number of malformations on the
membrane; \(D\) is the coefficient of malformation diffusion in the radial space;
\(\varphi\) is the
difference of potential applied to membrane; \(k\) is the Boltzmann's constant;
\(C\) is the reduced capacitance determined by a correlation \(C = C_0 (\varepsilon_w / \varepsilon_m - 1)\),
where \(C_0 = \varepsilon_0 \varepsilon_m / h\) is the specific electric capacitance of the membrane;
\(\varepsilon_w\) is the
dielectric water transparency, and \(\varepsilon_m\) is the dielectric permeability of BLM.

Collating theoretical lines with experimental points allowed determination of
\(A\) and \(B\) parameters. As indicated above, in the both cases the values of \(B\) para-

\[
\begin{align*}
\text{Reduction of mean lifetime of BLM at increasing potential difference:} \\
1 & \text{ – in the absence of hydrostatic pressure difference on the membrane;} \\
2 & \text{ – in the presence of hydrostatic pressure } p = 12,64 \text{ Pa. Dots indicate experimental data, continuous line – theoretical curves, drawn according to equation (1) through a least-squares technique.}
\end{align*}
\]
meter practically coincide \((B=2.50 \text{ on curve 1 and } B=2.26 \text{ on curve 2})\), whereas \(A\) parameters differ by values \((A=5.57 \text{ on curve 1, } A=4.40 \text{ on curve 2})\). The analysis of equation (1) and its collation with data obtained for \(A\) and \(B\) indicates that reduction of mean lifetime of BLM in the presence of hydrostatic pressure cannot be connected with changes in surface \((\sigma)\) or linear \((\gamma)\) tensions. One can suppose that reduction of mean lifetime of BLM at hydrostatic pressure should be connected with the increase in the number of malformations \((n)\) on BLM. It also proves that the difference of BLM hydrostatic pressure leads to the expansion of its area [4].

Author is grateful to Prof. V.B. Arakelyan for his assistance to this research and valuable comments.

Received 05.12.2009

REFERENCES

ԱՐՑԱՅՈՒԹՅՈՒՆԸՆՎԵԼԻ ՊՈՒՆԿՏԱՆԱՐ ՆՈՐՍԱՆԸՆՎԵԼԻ ՊՈՒՆՆԵՐ'

ՊՈՒՆՆԵՐ'

9. Ք. Մերսեսարյան, Զ. Մ. Մերսեսարյան. Պատկերամուկ ու թարգման ֆիզիկական,

Ազատագրվողների դեկորացիան բարդ է ոլորտի գրականության տեխնիկան, սակայն օգտակար է արձակագրման գործի

Մաս է զուգակցող թարգմանչության կենսագրական հարցերի համար, այլ ոչ թե թարգմանչության տեխնիկան.

Հ. Մ. Մերսեսարյան. Թիվն ու բազմացված թիվներ

Արտահայտվողների տեսակների բարդությունը կենսագրական հարցերի համար, այժմ զանգվածային վերանայման

Սոորի Նկարչի աջակցությամբ հայաստանյան համայնքների

Ազատագրվողների համար, որոնք կարող են կարևոր կանխաբեր դեկորացիայի արժեքի հարցերի համար.

I. Ո. Տաղանյան. Ուրախ Բարան: Նոր խնդիրներ ցանցի կարգավորված Պատկերամուկ դիտողների հարցեր

Ազատագրվող ուսումնասիրվողներ են նաև խնդիրներ համար հայաստանյան համայնքների համար.

\(Lu = (t^\alpha u^\ast) + au = f, \) պետքում կլինի այլ այլ կենսագրություն մասն և այլ է պետք:

\[r \]
նախագծին նույն Սևոյի էւկլիդյան միջոցով վերլուծություն և ուղի համապատասխան
բնականության կոնտրապոզիցիա.

Այսպիսով, հայտնի է, որ իրականության մեջ գտնվող միջոցով մոդել և անցելական
հայտնի է, որ համապատասխան որոշողության սակավը և որում են արտահայտված միջոցներ:

Ա. Դերդանայում. Երկրի արծաթև թվի բազմակիցության դերը, դուրս այն թևեր կուտակ
այս թևերի տեսքը, ինչպես տեսքը ներկայացնող ուղի համար, դուրս այն թևեր կուտակ
այս թևերի տեսքը, ինչպես տեսքը ներկայացնող ուղի համար: Պրակկությունը
կերպարվում է կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում:

ԲԱրձրակերպ

Ա. Դերդանայում. Երկրի արծաթև թվի բազմակիցության դերը, դուրս այն թևեր կուտակ
այս թևերի տեսքը, ինչպես տեսքը ներկայացնող ուղի համար, դուրս այն թևեր կուտակ
այս թևերի տեսքը, ինչպես տեսքը ներկայացնող ուղի համար: Պրակկությունը
կերպարվում է կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում:

ՊԱՇՏՈՒՆԻՆ

Ա. Դերդանայում. Երկրի արծաթև թվի բազմակիցության դերը, դուրս այն թևեր կուտակ
այս թևերի տեսքը, ինչպես տեսքը ներկայացնող ուղի համար, դուրս այն թևեր կուտակ
այս թևերի տեսքը, ինչպես տեսքը ներկայացնող ուղի համար: Պրակկությունը
կերպարվում է կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում:

ՀՊԱՇՏՈՒՆԻՆ

Ա. Դերդանայում. Երկրի արծաթև թվի բազմակիցության դերը, դուրս այն թևեր կուտակ
այս թևերի տեսքը, ինչպես տեսքը ներկայացնող ուղի համար, դուրս այն թևեր կուտակ
այս թևերի տեսքը, ինչպես տեսքը ներկայացնող ուղի համար: Պրակկությունը
կերպարվում է կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում:

ՊՀՊԱՇՏՈՒՆԻՆ

Ա. Դերդանայում. Երկրի արծաթև թվի բազմակիցության դերը, դուրս այն թևեր կուտակ
այս թևերի տեսքը, ինչպես տեսքը ներկայացնող ուղի համար, դուրս այն թևեր կուտակ
այս թևերի տեսքը, ինչպես տեսքը ներկայացնող ուղի համար: Պրակկությունը
կերպարվում է կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում:

ՊՀՊՀՊԱՇՏՈՒՆԻՆ

Ա. Դերդանայում. Երկրի արծաթև թվի բազմակիցության դերը, դուրս այն թևեր կուտակ
այս թևերի տեսքը, ինչպես տեսքը ներկայացնող ուղի համար, դուրս այն թևեր կուտակ
այս թևերի տեսքը, ինչպես տեսքը ներկայացնող ուղի համար: Պրակկությունը
կերպարվում է կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում:

ՊՀՊՀՊՀՊԱՇՏՈՒՆԻՆ

Ա. Դերդանայում. Երկրի արծաթև թվի բազմակիցության դերը, դուրս այն թևեր կուտակ
այս թևերի տեսքը, ինչպես տեսքը ներկայացնող ուղի համար, դուրս այն թևեր կուտակ
այս թևերի տեսքը, ինչպես տեսքը ներկայացնող ուղի համար: Պրակկությունը
կերպարվում է կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում կերպարվում: Չի պահում
Ու. Ա. Հայրենիք. Ու գիտական-տեխնիկական վիճակագրության առաջին հատուկ հրատարակության տարի կազմված է 1969 թ. 54–57 էջեր էջեր

Այս թեմայի մեջ պարունակվում է դեռևս հայտնի տեխնիկական վիճակագրության էջեր, որոնք ընդգրկում են ոսկերչական, սպիտակասպիտակ, զեղչեստ, պարազիտական, մոնոքարիական և ռազմական վիճակագրության մասին տեղեկագրություններ։ Նրանք զարգացած են ուսուցիչ և նախագծային միջազգային տեխնիկական վիճակագրության մեջ։

ՎԱՐԴԱՆԱՅՆ ՄԵՆԵՐ

§ 1. Հայրենիքային։ Որբույթի համակարգերի կազմակերպման սխալները և ճաշտական քայլեր

Պատմականապես հետազոտվում է մի շարք գիտական և բնագրական վիճակագրություններ, որոնք զարգացած են գիտական-տեխնիկական երկրագրական գիտական մեջ։ Նրանք զարգացած են ուսուցիչ և նախագծային միջազգային տեխնիկական վիճակագրության մեջ։

Ա. Ո. Պողոսյան, Ո. Մ. Բարդալյան։ Սահման կարգը գիտականական պոլիտեխնիկական ձևով համակարգերի կազմության մեջ

Այս տեղեկատվությունները ներկայացվում են տեխնիկական վիճակագրության մեջ։ Նրանք զարգացած են լսուն բնագրական և տեխնիկական երկրագրական մեջ։
АННОТАЦИЯ

МАТЕМАТИКА

Г. В. Микаелян, З. С. Микаелян. Функции типа Вейерштрасса и Бляшке стр. 3–8

В данной статье обобщены множители Вейерштрасса и доказана теорема сходимости соответствующих бесконечных производных. Установлены представления функций типа Бляшке через функции типа Вейерштрасса и функции Бляшке. Указан способ построения новых производных типа Бляшке и метод доказательства их сходимости. Установлены некоторые соотношения между производными типа Бляшке.

А. В. Саргсян. О факторизации одного класса матриц-функций второго порядка стр. 9–15

В работе предлагается метод построения факторизации одного класса матриц-функций второго порядка. Левый нижний элемент этих матриц-функций записывается с помощью комбинаций остальных трех элементов и двух мероморфных функций, которые определяются соответственно внутри и вне единичного круга.

Сиваси Гарбанян. Краевая задача для псевдопараболических уравнений стр. 16–21

В работе исследуется начально-краевая задача для уравнения типа Соболева

\[\frac{\partial}{\partial t} L(u(t,x)) + M(u(t,x)) = f(t,x), \quad t > 0, \quad x = (x_1,\ldots,x_n) \in \Omega \subset \mathbb{R}^n, \]

\[\nu|_{\partial \Omega} = 0, \]

\[(Lu)(0,x) = g(x), \quad x \in \Omega, \]

gде Л и М – дифференциальные операторы второго порядка. Доказывается, что если удовлетворяются некоторые условия, то эта задача в соответствующем функциональном пространстве имеет единственное решение.

Л. П. Топоян, Дарюш Калван. Задача Неймана для обыкновенного вырождающегося дифференциального уравнения четвертого порядка стр. 22–26

В работе рассматривается задача Неймана для уравнения

\[Lu \equiv (t^\alpha u')' + au = f, \quad 0 \leq \alpha \leq 4, \quad t \in [0,b], \quad f \in L_2(0,b). \]

Сначала мы опре-
делям весовое пространство Соболева W_0^2 и обобщенное решение для этого уравнения. Затем изучается вопрос существования и единственности обобщенного решения, а также даются описания спектра и области определения для соответствующего оператора.

X. Л. Вардзян. Регрессионные модели, порожденные распределением умеренного роста
стр. 27–31

Рассматривается регрессионная модель, порожденная двухпараметрическим распределением умеренного роста, которое возникает в биоинформатике. Доказывается состоятельность в слабом смысле оценок наименьших квадратов параметров модели. Получены распределения оценок наименьших квадратов параметров и оценки дисперсии гауссовского шума, которые могут быть использованы для проверки гипотез относительно параметров модели.

МЕХАНИКА

Р. Шарифиан. Устойчивость изотропных пластин в случае, когда две противоположные стороны пластины свободно оперты, а две другие закреплены посредством упругого шарнира
стр. 32–36

С помощью аналитического метода Леви определены критические нагрузки потеря устойчивости прямоугольных пластин, когда две противоположные стороны пластины свободно оперты, а две другие закреплены посредством упругого шарнира. Изучена зависимость критических нагрузок от параметров упругого закрепления. Для частных случаев установлено соответствие с известными из литературы результатами.

ИНФОРМАТИКА

А. Г. Аракелиян. О типовой корректности полиморфных λ-термов. 2
стр. 37–46

В работе рассматриваются полиморфные λ-термы, в которых отсутствует информация о типах переменных. Цель данной работы – доказать, что представленный в [1] алгоритм типизации выводит самый общий тип таких термов.

ФИЗИКА

А. Л. Мхитарян. Вакуумные флуктуации в космологических моделях с компактными измерениями
стр. 47–53

Исследованы квантовые эффекты скалярного поля в космологических моделях Фридмана—Робертсона—Уокера со степенным масштабным фактором и с пространственной топологией $R^p \times (S^1)^q$. Получены рекуррентные формулы для положительно-частотной функции Вайтмана и плотности энергии.
A. С. Зейтуни. Спектральная ширина и длительность нелинейно-дисперсионного симилитриона

На основе исследований спектральных особенностей нелинейно-дисперсионного симилитриона, сформированного в одномодовом оптическом волоконном светодиоде без усиления (в пассивном волоконном светодиоде), показано, что спектральная ширина такого симилитриона обусловлена исключительно исходной мощностью импульса. Эта особенность нелинейно-дисперсионного симилитриона может быть использована для измерения длительности импульсов в фемтосекундном временном масштабе в качестве альтернативы автокорреляционному методу.

СООБЩЕНИЯ

A. Г. Оганесян. Эффективные оценки для модели, порожденной распределением умеренного роста

В настоящей заметке рассмотрена двухпараметрическая модель, порожденная распределением умеренного роста. Получена параметрическая функция неизвестных параметров, для которой существует несмещенная эффективная оценка. Найдена также и сама оценка.

A. А. Чубарян, О. Р. Боливекян. Об ускорении Рабина для выводов в некоторых системах логики первого порядка

В статье рассматривается понятие стандартной теории. Для ряда систем исчисления предикатов первого порядка доказано, что они являются стандартными. На основе понятия стандартной теории проведен анализ сложности выводов в указанных системах.

A. К. Геворкян. Совместное действие электростатического поля и гидростатического давления на устойчивость бислойных липидных мембран

Работа посвящена экспериментальному исследованию устойчивости бислойной липидной мембраны (БЛМ) при совместном действии электростатического поля и гидростатического давления. Показано, что с увеличением разности потенциалов на БЛМ среднее время жизни мембраны уменьшается. Наличие гидростатического давления приводит к дополнительному уменьшению среднего времени жизни БЛМ.
INSTRUCTION FOR AUTHORS

Aims and Scope. “Proceedings of the YSU, Physical and Mathematical Sciences” is a peer-reviewed journal, which is published thrice a year in English. The journal presents original articles and short communications, containing new results of theoretical, experimental and applied investigations carried out in YSU or in other scientific centers of Armenia. The journal also presents information about new scientific books and conferences on subject organized or coorganized by YSU.

Submission of the Manuscript. The authors are requested to submit one hard copy (printed only on one side of A4 paper) and the electronic version of the manuscript both in English and Russian. The Russian language version will be used only for review processing.

Only papers not previously published will be accepted and authors must agree not to publish elsewhere a paper submitted to and accepted by the journal. By submitting a paper the author confirms that its submission for publication has been approved by all of the authors.

Preparation of the Manuscript for Submission. The maximum number of pages, including figures and tables, is limited to 10 for scientific articles and 4 for short communications. The papers should be prepared by Microsoft Word 2003 editor for Windows OS, in accordance with the following styles: font – Times New Roman; font size – 12, line spacing – 1,5; paper – A4 with the margins of 3 cm. All formulas should be typesetted using MathType editor or the standard Equation editor embedded in MS Word package.

The number of figures should not exceed 5. The figures should be located within the text using figure captions. Only grayscale figures should be included in the paper.

The first page of article should contain the article title, the name and complete institutional affiliation of each author, and a short abstract (the abovementioned would be presented also in Armenian and Russian). The abstract should be followed by Keywords. The first footnote on the first page should point to the e-mail address of corresponding author.

The article structure typically consists of the following sections: Introduction, Results and Discussions, Conclusion and References.

The references should be presented in English in following style:
– for articles: authors’ names, journal name (using standard abbreviations), year, volume and issue number, page numbers;
– for books: authors’ names, full title, publisher, year, total number of pages.

Pre- and Post-Printing Process. In case of acceptance of the manuscript for publishing the corresponding author will receive the galley proofs for checking the corrections.

After publication of the article the authors will receive one copy of journal (for each one) and 5 reprints for free.