Type:
Master
Speciality:
056201.04.7 - Statistics
Specialisation:
056201.04.7 - Applied statistics and data science
Qualification awarded:
Master of Statistics
Programme academic year:
2024/2025
Mode of study:
Full time
Language of study:
Հայերեն
General educational component
Chair code | Name of the course | Credits |
---|---|---|
0105 | Information Technologies in Specialization | 3 |
1st semester
Contact hours - 2 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
MANDATORY
0105/Մ01
1. Purpose of the Course
· introduce students to the basics of the Python programming language.
· To learn to work with data, variables, arrays, functions. · Develop skills that will allow students to design solutions to non-trivial problems using Python. · To enable students to use the basics of object oriented programming. 2. Educational Outcomes
a. professional knowledge and expertise
1. Present the structure of the Python language, basic grammar, variable types. 2. Use the basics of object-oriented programming. b. practical professional skills 3. Write computer programs using the Python programming language. 4. Implement various algorithms using the Python programming language. 5. Use the Numpy package in calculations. 3. Description
· introduce students to the basics of the Python programming language.
· To learn to work with data, variables, arrays, functions. · Develop skills that will allow students to design solutions to non-trivial problems using Python. · To enable students to use the basics of object oriented programming. 4. Teaching and Learning Styles and Methods
1. Presentation with Power point materials.
2. Practical works in computer classrooms. 5. Evaluation Methods and Criteria
The test is conducted by questionnaires with a maximum value of 20 points. Students who get 10 or more points from the test in the 20-point system will be considered to have passed the test.
6. Basic Bibliography
|
||
0105 | Research Planning and Methods | 3 |
1st semester
Contact hours - 2 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
MANDATORY
0105/Մ02
1. Purpose of the Course
● acquaint students with data storage and management systems,
● enable students to design and build databases using modern technologies, ● acquaint students with SQL-language and DBMS packages. 2. Educational Outcomes
a. professional knowledge and expertise
1. describe the processes of physical and logical database design and database modeling, 2. use the basic concepts of DBMS, b. practical professional skills 3. to design databases, c. generic/transferable skills 4. write queries and perform analyzes using the capabilities of the SQL language. 3. Description
● acquaint students with data storage and management systems,
● enable students to design and build databases using modern technologies, ● acquaint students with SQL-language and DBMS packages. 4. Teaching and Learning Styles and Methods
1. lectures,
2. practical work using computer programs, 3. individual work with computer programs and literature. 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. Tests with a maximum value of 6 points (30%). 2. Independent work with a maximum value of 6 points (30%). 3. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
1603 | English | 3 |
1st semester
Contact hours - 2 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
MANDATORY
1603/Մ03
1. Purpose of the Course
· To develop English communication skills based on a professional speech patterns used in the field,
· to form the necessary abilities in all manifestations of speech (reading, listening, writing and speaking) deepening knowledge of basic vocabulary, · introduce the strategy and principles of professional writing. 2. Educational Outcomes
a. professional knowledge and expertise
1. apply knowledge of a foreign (English) language to the extent necessary to extract information of a professional nature from foreign language sources, b. practical professional skills 2. will have knowledge of general and professional vocabulary in a foreign (English) language to the extent necessary for professional communication, as well as for reading and translating texts, c. generic/transferable skills 3. will be able to compose a clear, well-structured text on a professional topic in a foreign language, describe his experience and events, present justifications for his own opinions and goals. 3. Description
· To develop English communication skills based on a professional speech patterns used in the field,
· to form the necessary abilities in all manifestations of speech (reading, listening, writing and speaking) deepening knowledge of basic vocabulary, · introduce the strategy and principles of professional writing. 4. Teaching and Learning Styles and Methods
· Collaborative Learning,
· Problem based method · Spaced Learning, · "World Cafe" · Flipped classroom method · case based method · Inquiry Based Learning. 5. Evaluation Methods and Criteria
Test.
Evaluation methods: Progress assessment, "Portfolio" assessment/Portfolio assessment, Language skills assessment/Proficiency assessment). Criteria: Check past professional topics, chat on professional topics, check mandatory assignments. 6. Basic Bibliography
|
||
1604 | --- | 3 |
1st semester
Contact hours - 2 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
MANDATORY
1604/Մ03
1. Purpose of the Course
· deepen and improve as much as possible all language skills (reading-understanding-reproducing, listening-understanding-reproducing, speaking, writing),
· to develop the skills and abilities to communicate in German, · deepen general and professional language vocabulary, grammar and stylistic characteristics knowledge. 2. Educational Outcomes
a. professional knowledge and expertise
1. create professional and general communicative texts monologues and dialogues, 2. distinguish the inconsistencies of the mother tongue and the studied foreign language, to understand the means of their transfer in both languages, 3. define all layers of professional vocabulary with the aim of their precise use, 4. present and interpret professional viewpoints and arguments, formulate, compose, justify personal opinion, discuss, debate current issues of profession, b. practical professional skills 5. while listening or reading the text, take notes for later use in writing, logically and clearly constructing the essay, 6. to build a verbally connected speech describing phenomena, events, justifying one's point of view, c. generic/transferable skills 7. effectively use various information sources (including the Internet) to gather, critically analyze and present information. Upon successful completion of the course, the student's knowledge and abilities must correspond to the level A2-B1 of the Pan-European Framework of Reference for Languages (CEFR). 3. Description
· deepen and improve as much as possible all language skills (reading-understanding-reproducing, listening-understanding-reproducing, speaking, writing),
· to develop the skills and abilities to communicate in German, · deepen general and professional language vocabulary, grammar and stylistic characteristics knowledge. 4. Teaching and Learning Styles and Methods
1. practical training under the guidance of a lecturer,
2. individual and group work, 3. individual and team research work, 4. independent work 5. oral presentation (realization of an individual independent project), 6. written and oral examination/questionnaire, 7. discussion of situational problems. 5. Evaluation Methods and Criteria
The course ends with a test. It tests the material passed, taking into account the degree of acquisition and reproduction of basic general and professional vocabulary, as well as the basic patterns characteristic to German.
6. Basic Bibliography
|
||
1705 | --- | 3 |
1st semester
Contact hours - 2 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
MANDATORY
1705/Մ03
1. Purpose of the Course
· to develop students' language skills and communication abilities in all areas of linguistic activity,
· ensure the application of the language knowledge and skills students already gained for professional purposes, · expand the vocabulary of the professional language, deepen the knowledge about the morphological, syntactic and stylistic features of the professional language. 2. Educational Outcomes
a. professional knowledge and expertise
1. demonstrate in-depth knowledge of professional language vocabulary, 2. demonstrate knowledge of basics of creating professional text summaries, b. practical professional skills 3. analyze the listened/read professional text, separating the main content from the secondary content, independently compose a text on a professional topic, 4. to prepare abstracts, reports, summaries of scientific texts on professional topics, c. generic/transferable skills 5. to expand the possibilities of receiving information from Russian-language sources, 6. discuss and analyze professional issues in Russian. 3. Description
· to develop students' language skills and communication abilities in all areas of linguistic activity,
· ensure the application of the language knowledge and skills students already gained for professional purposes, · expand the vocabulary of the professional language, deepen the knowledge about the morphological, syntactic and stylistic features of the professional language. 4. Teaching and Learning Styles and Methods
· practical training
· independent work · team work, · oral presentation · written and oral quizzes. 5. Evaluation Methods and Criteria
The course ends with an oral exam based on the results of the final written exam at the end of the semester.
6. Basic Bibliography
|
||
1608 | French-1 | 3 |
1st semester
Contact hours - 2 hours/week
2 hours practical, 4 hours independent work per week
MANDATORY
1608/Մ03
1. Purpose of the Course
· To develop abilities of perception and interpretation of scientific texts
· To introduce different aspects of scientific French at different levels (phonetic - tonal, verbal morphological-syntactic, stylistic), · To develop scientific communication abilities. 2. Educational Outcomes
a. professional knowledge and expertise
1. to discuss linguistic and stylistic aspects of various scientific texts, 2. to describe linguistic terminology related to different problems, b. practical professional skills 3. perform an analysis of the communicative potential of scientific texts, 4. translace in practice different scientific texts from French to Armenian and viceversa c. general/transferable skills 5. use of information from variety of sources (online resources, scientific articles and etc), 6. apply the obtained knowledge also for other adjacent disciplines, within the framework of the study program. 3. Description
· To develop abilities of perception and interpretation of scientific texts
· To introduce different aspects of scientific French at different levels (phonetic - tonal, verbal morphological-syntactic, stylistic), · To develop scientific communication abilities. 4. Teaching and Learning Styles and Methods
practical classes, reading of the assigned literature, discussions, independent research work, group work, innovative methods of teaching: communicative, interactive, etc
5. Evaluation Methods and Criteria
The course ends with a pass/no pass test.
6. Basic Bibliography
|
Professional educational component
Chair code | Name of the course | Credits |
---|---|---|
0105 | Optimization | 3 |
1st semester
Contact hours - 4 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
MANDATORY
0105/Մ04
1. Purpose of the Course
● to acquaint students with theoretical and numerical methods of optimization, in particular, the theory of unconstrained and constrained finite-dimensional smooth optimization and numerical solution algorithms, elements of linear and convex programming.
2. Educational Outcomes
a. professional knowledge and expertise
1. classify optimization problems, 2. study the questions of the existence and uniqueness of extremes, to check necessary and sufficient conditions for extremes, 3. construct the dual linear programming problem, b. practical professional skills 4. use numerical methods to find extremum points of multivariate functions (with or without constraints), 5. formulate various applied problems as linear programming problems, 6. use numerical algorithms to solve linear programming problems, c. generic/transferable skills 7. work with literature, work in a team. 3. Description
● to acquaint students with theoretical and numerical methods of optimization, in particular, the theory of unconstrained and constrained finite-dimensional smooth optimization and numerical solution algorithms, elements of linear and convex programming.
4. Teaching and Learning Styles and Methods
1. lectures,
2. practical exercises, 3. implementation of a group project. 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. Tests with a maximum value of 6 points (30%). 2. Independent work with a maximum value of 6 points (30%). 3. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Econometrics | 3 |
1st semester
Contact hours - 2 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
MANDATORY
0105/Մ05
1. Purpose of the Course
● introduce students to modern econometric models and tools,
● introduce regression analysis, estimation of coefficients and study of their properties. 2. Educational Outcomes
a. professional knowledge and expertise
1. perform regression analysis with spatial data (cross-sectional data), 2. perform regression analysis with time series data, 3. explore regression properties, test hypotheses, b. practical professional skills 4. choose a model, 5. perform regression analysis using computer packages, 6. perform modeling and forecasting of the correlation of economic data of different nature. 3. Description
● introduce students to modern econometric models and tools,
● introduce regression analysis, estimation of coefficients and study of their properties. 4. Teaching and Learning Styles and Methods
1. theoretical lectures,
2. practical exercises. 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. Tests with a maximum value of 6 points (30%). 2. Individual work with a maximum value of 6 points (30%). 3. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Գծային հանրահաշիվ և կիրառություններ | 6 |
1-ին՝ աշնանային կիսամյակ
Լսարանային ժամեր-շաբաթական 4 ժամ
4 ժամ դասախոսություն, շաբաթական 8 ժամ ինքնուրույն աշխատանք
MANDATORY
0105/Մ06
1. Purpose of the Course
սովորեցնել մաթեմատիկական անալիզի, գծային հանրահաշվի, հավանականությունների տեսության և թվային մեթոդների այն հասկացությունները, որոնք անհրաժեշտ են վիճակագրության, օպտիմիզացիայի և մեքենայական ուսուցման դասընթացներում։
2. Educational Outcomes
ա. մասնագիտական գիտելիք և իմացություն
1. գտնել լոկալ և հարաբերական էքստրեմումներ, 2. հաշվել պատահական մեծությունների նկարագրիչները, բ. գործնական մասնագիտական կարողություններ 3. իջեցնել տվյալների չափողականությունը PCA մեթոդով, 4. մոտարկել տվյալները GMM-ով, գ.ընդհանրական/փոխանցելի կարողություններ 5. օգտվել տեղեկատվության տարատեսակ աղբյուրներից։ 3. Description
սովորեցնել մաթեմատիկական անալիզի, գծային հանրահաշվի, հավանականությունների տեսության և թվային մեթոդների այն հասկացությունները, որոնք անհրաժեշտ են վիճակագրության, օպտիմիզացիայի և մեքենայական ուսուցման դասընթացներում։
4. Teaching and Learning Styles and Methods
1. տեսական դասախոսություններ, գործնական աշխատանք,
2. անհատական ու թիմային հանձնարարականներ ուսանողներին։ 5. Evaluation Methods and Criteria
Դասընթացը գնահատվում է առավելագույնը 20 միավոր.
1. 1-ին ընթացիկ քննություն՝ 4 միավոր առավելագույն արժեքով (20%), 2. 2-րդ ընթացիկ քննություն. հետազոտական աշխատանքի ներկայացում ՝ 4 միավոր առավելագույն արժեքով (20%), 3. Ընթացիկ ստուգում(ներ)՝ 3 միավոր առավելագույն արժեքով (15%), 4. Եզրափակիչ քննություն՝ 9 միավոր առավելագույն արժեքով (45%)։ 6. Basic Bibliography
7. Main sections of the course
1. մաթեմատիկական անալիզի տարրեր ( մասնակի ածանցյալներ, գրադիենտ, շղթայի կանոն, էքստրեմումներ),
2. գծային հանրահաշվի տարրեր (ԳՀՀ լուծում Գաուսի մեթոդով, -1-հնարք, պրոյեկցիայի օպերատորներ, Խոլեցկայի վերլուծություն, SVD, փոքրագույն քառակուսիների խնդիրը), 3. հավանականության տեսության տարրեր (պատահական մեծություններ և դրանց նկարագրիչներ, ստանդարտ բաշխումներ), 4. թվային մեթոդներ (PCA, GMM, EM ալգորիթմներ)։ |
||
0105 | Applied Statistics | 6 |
1st semester
Contact hours - 4 hours/week
Lectures-4 hours/week, Individual work-8 hours/week
MANDATORY
0105/Մ07
1. Purpose of the Course
▪ describe classical statistical models and methods,
▪ teach the basics of the R programming language, ▪ teach the implementation of statistical models in R. 2. Educational Outcomes
a . professional knowledge and expertise
1. choose appropriate statistical models for various practical problems, 2. recognize the basic commands of R, 3. describe the statistical model solution algorithm in R, b . practical professional skills 4. create programs in R, 5. build statistical models for various applied problems, 6. solve specific application problems with the help of R 3. Description
▪ describe classical statistical models and methods,
▪ teach the basics of the R programming language, ▪ teach the implementation of statistical models in R. 4. Teaching and Learning Styles and Methods
1. Theoretical lectures, practical work with computers.
2. Completion of individual/group assignments. 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. 1st midterm exam with a maximum value of 4 points (20%). 2. 2nd midterm exam with a maximum value of 4 points (20%). 3. Quizzes with a total maximum value of 4 points (20%). 4. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Data Engineering | 3 |
2nd semester
Contact hours - 4 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
MANDATORY
0105/Մ09
1. Purpose of the Course
· introduce the basic concepts and methods of data processing,
· develop skills to solve practical problems using modern data processing software. 2. Educational Outcomes
a. professional knowledge and expertise
1. present the concepts of data analysis, modern methods and models, b. practical professional skills 2. use data analysis algorithms in practical problems, 3. carry out classification or clustering of data collected in different fields, 4. make predictions based on data analysis, c. generic/transferable skills 5. use professional literature, other sources of information, 6. conduct research using knowledge of data analysis. 3. Description
· introduce the basic concepts and methods of data processing,
· develop skills to solve practical problems using modern data processing software. 4. Teaching and Learning Styles and Methods
1. Lectures
2. Practical exercises 3. Doing a group project 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. Tests with a maximum value of 6 points (30%). 2. Individual work with a maximum value of 6 points (30%). 3. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Python Programming language | 3 |
2nd semester
Contact hours - 2 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
MANDATORY
0105/Մ10
1. Purpose of the Course
● to equip students with advanced programming knowledge,
● Familiarize students with testing, error handling and debugging, ● Familiarize students with various Python libraries and packages. 2. Educational Outcomes
a. professional knowledge and expertise
1. formulate the principle of parallel computing, 2. use basics of functional programming, b. practical professional skills 3. write relatively complex and systematic computer programs, 4. to apply error handling and debugging, 5. to implement the principle of parallel computing in Python, 6. to use various Python libraries. 3. Description
● to equip students with advanced programming knowledge,
● Familiarize students with testing, error handling and debugging, ● Familiarize students with various Python libraries and packages. 4. Teaching and Learning Styles and Methods
1. Slide presentations,
2. practical work using computer programs, 3. independent work with computer programs and literature. 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. 1st midterm exam with a maximum value of 4 points (20%). 2. 2nd midterm exam with a maximum value of 4 points (20%). 3. Quizzes with a total maximum value of 6 points (30%). 4. Independent work with a maximum value of 6 points (30%). 6. Basic Bibliography
|
||
0105 | Bayesian statistics | 6 |
2nd semester
Contact hours - 4 hours/week
Lectures-4 hours/week, Individual work-8 hours/week
MANDATORY
0105/Մ11
1. Purpose of the Course
▪ To describe the Bayesian approach to statistical problems in data analysis,
▪ To give an idea about prior distribution, likelihood and posterior distribution, ▪ To teach how to build Bayesian networks and perform Bayesian data analysis. 2. Educational Outcomes
a. professional knowledge and expertise
1. perform Bayesian estimation in various statistical problems, 2. build Bayesian networks, b. practical professional skills 3. perform Bayesian data analysis, model selection and evaluation, 4. solve specific application problems of data analysis with the help of computer packages, c. generic/transferable skills 5. analyze existing problems, propose mathematical models, ways of solving them. 3. Description
▪ To describe the Bayesian approach to statistical problems in data analysis,
▪ To give an idea about prior distribution, likelihood and posterior distribution, ▪ To teach how to build Bayesian networks and perform Bayesian data analysis. 4. Teaching and Learning Styles and Methods
- Theoretical lectures, practical work with computers.
- Completion of individual/group assignments. 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. 1st midterm exam with a maximum value of 4 points (20%). 2. 2nd midterm exam with a maximum value of 4 points (20%). 3. Tests with a maximum value of 4 points (20%). 4. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Time Series | 3 |
2nd semester
Contact hours - 2 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
MANDATORY
0105/Մ12
1. Purpose of the Course
● to acquaint students with the main methods of time series analysis and forecasting with them,
● to introduce students to specialized computer programs and their application to perform time series analysis. 2. Educational Outcomes
a. professional knowledge and expertise
1. describe the main characteristics of time series, 2. apply ARMA models for time series analysis and use these methods in practice, 3. use the elements of spectral analysis, b. practical professional skills 4. build various application models using time series, 5. use probabilistic, optimization, statistical, econometric, numerical and other mathematical methods to investigate developed models, 6. use a professional software to solve resulting problems, c. generic/transferable skills 7. analyze existing problems of the field and propose approaches to solve them. 3. Description
● to acquaint students with the main methods of time series analysis and forecasting with them,
● to introduce students to specialized computer programs and their application to perform time series analysis. 4. Teaching and Learning Styles and Methods
1. lectures,
2. practical work using computer programs, 3. independent work with computer programs and literature. 5. Evaluation Methods and Criteria
The course is valued at a maximum of 20 points.
· Current tests, with a maximum value of 6 points (30%). · Independent work, with a maximum value of 6 points (30%). · Current exams are written, with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Multivariate Statistics | 3 |
2nd semester
Contact hours - 2 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
MANDATORY
0105/Մ14
1. Purpose of the Course
● introduce students to statistical analysis problems related to several correlated random variables, in particular, study multivariate normal distribution, confidence sets, multivariate hypothesis testing, factor analysis, cluster analysis, etc.
2. Educational Outcomes
a. professional knowledge and expertise
1. represent the relationship of several random variables, 2. test multivariate hypotheses, 3. use the principal components method, factor, cluster analysis methods, b. practical professional skills 4. work with multivariate distributions, 5. perform multivariate regression, 6. perform cluster, factor and other analyzes with the help of computer software, c. generic/transferable skills 7. use various information sources. 3. Description
● introduce students to statistical analysis problems related to several correlated random variables, in particular, study multivariate normal distribution, confidence sets, multivariate hypothesis testing, factor analysis, cluster analysis, etc.
4. Teaching and Learning Styles and Methods
1. theoretical lectures,
2. practical work with computers. 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. Tests with a maximum value of 6 points (30%). 2. Independent work with a maximum value of 6 points (30%). 3. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Machine Learning-1 | 6 |
2nd semester
Contact hours - 4 hours/week
Lectures-4 hours/week, Individual work-8 hours/week
MANDATORY
0105/Մ13
1. Purpose of the Course
· To teach the basics of machine learning,
· To teach implementing machine learning models in Python, · To teach modeling large amounts of data and using machine learning models to make predictions based on that data. 2. Educational Outcomes
a. professional knowledge and expertise
1. apply relevant machine learning concepts and methods to formulate and solve practical problems involving large amounts of data; 2. use machine learning models for forecasting and decision making; 3. choose the appropriate model in cases of limited or no information about the dependence between the data; b. practical professional skills 4. make programs based on machine learning models, 5. determine parameter values of commonly used machine learning models, 6. use Python to analyze large amounts of data, make predictions, and estimate the degree of uncertainty in those predictions. 3. Description
· To teach the basics of machine learning,
· To teach implementing machine learning models in Python, · To teach modeling large amounts of data and using machine learning models to make predictions based on that data. 4. Teaching and Learning Styles and Methods
1. theoretical lectures, practical work with computers,
2. individual and team assignments for students. 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. 1st midterm exam with a maximum value of 4 points (20%). 2. 2nd midterm exam with a maximum value of 4 points (20%). 3. Tests with a maximum value of 4 points (20%). 4. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Computer Vision | 3 |
3rd semester
Contact hours - 2 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
MANDATORY
0105/Մ15
1. Purpose of the Course
● to acquaint students with classical and modern methods of computer vision, in particular, image processing with neural networks.
2. Educational Outcomes
a. professional knowledge and expertise
1. distinguish different computer vision problems, 2. choose an appropriate solution approach for each problem, b. practical professional skills 3. use computer vision algorithms to solve various real-world problems. 3. Description
● to acquaint students with classical and modern methods of computer vision, in particular, image processing with neural networks.
4. Teaching and Learning Styles and Methods
1. lectures,
2. practical exercises. 5. Evaluation Methods and Criteria
The course is valued at a maximum of 20 points.
· Current tests, with a maximum value of 6 points (30%). · Independent work, with a maximum value of 6 points (30%). · Current exams are written, with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Ինֆորմացիայի տեսություն | 3 |
1-ին՝ գարնանային կիսամյակ
Լսարանային ժամեր-շաբաթական 2 ժամ
2 ժամ դասախոսություն, շաբաթական 4 ժամ ինքնուրույն աշխատանք
MANDATORY
0105/Մ08
1. Purpose of the Course
· ուսանողներին ծանոթացնել տվյալների մշակման ու հաղորդման մաթեմատիկական հիմունքներին,
· ինֆորմացիայի չափման եղանակներին, · տվյալների սեղմման ալգորիթմներին և հասանելի սահմաններին, · կապուղու ունակության գաղափարին և սխալներ ուղղող կոդերի կառուցման սկզբունքներին։ 2. Educational Outcomes
ա. մասնագիտական գիտելիք և իմացություն
1. մեկնաբանել տվյալների վերլուծության, սեղմման ու հաղորդման մաթեմատիկական սկզբունքները, մոդելները, ալգորիթմները, բ. գործնական մասնագիտական կարողություններ 2. օգտագործել ինֆորմացիայի տեսության մեթոդները կիրառական խնդիրների լուծման մեջ զանազան ոլորտներում, ինչպես օրինակ, հեռահաղորդակցության մեջ, գ. ընդհանրական/փոխանցելի կարողություններ 3. կառուցել կոդեր, գնահատել դրանց օպտիմալությունը։ 3. Description
· ուսանողներին ծանոթացնել տվյալների մշակման ու հաղորդման մաթեմատիկական հիմունքներին,
· ինֆորմացիայի չափման եղանակներին, · տվյալների սեղմման ալգորիթմներին և հասանելի սահմաններին, · կապուղու ունակության գաղափարին և սխալներ ուղղող կոդերի կառուցման սկզբունքներին։ 4. Teaching and Learning Styles and Methods
Տեսական դասախոսություններ, գործնական աշխատանք համակարգիչներով:
Անհատական/թիմային հանձնարարություններ: 5. Evaluation Methods and Criteria
Դասընթացը գնահատվում է առավելագույնը 20 միավոր.
1. Ընթացիկ ստուգում(ներ)՝ 6 միավոր առավելագույն արժեքով (30%), 2. Ինքնուրույն աշխատանք՝ 6 միավոր առավելագույն արժեքով (30%), 3. Եզրափակիչ քննություն՝ 8 միավոր առավելագույն արժեքով (40%): 6. Basic Bibliography
7. Main sections of the course
● Ինֆորմացիայի չափեր, դրանց հատկություններ
● Տվյալների մշակման և Ֆանոյի անհավասարություն ● Տվյալների սեղմում, Կրաֆթի անհավասարություն ● Հաֆմանի և Շենոն-Ֆանո-Էլիասի կոդեր ● Կապուղի. մոդելներ, կոդավորման խնդիրը, ունակություն ● Հեմինգի կոդեր ● Ինֆորմացիայի տեսություն և վիճակագրություն. տիպերի մեթոդը ● Աղբյուրի ունիվերսալ կոդավորում ● Մեծ շեղումների տեսություն ● Սխալի հավանականությունը վարկածների ստուգման խնդրում ● Տվյալների սեղմում ըստ ճշգրտության չափանիշի։ |
Chair code | Name of the elective course | Credits |
---|---|---|
0105 | Random processes and stochastic analysis | 6 |
3rd semester
Contact hours - 4 hours/week
Lectures-4 hours/week, Individual work-8 hours/week
OPTIONAL
0105/Մ16
1. Purpose of the Course
● introduce students to the theory of random processes and stochastic analysis methods, in particular, to introduce Brownian motion, martingales, Markov processes, the construction of stochastic integral and Ito's formula.
2. Educational Outcomes
a. professional knowledge and expertise
1. describe Brownian motion, martingales, Markov processes, their main properties, 2. describe the construction of stochastic integral and its properties, work with simple stochastic differential equations, b. practical professional skills 3. use random processes in modeling problems, 4. use the stochastic integral and Ito's formula, 5. perform simulations using computer packages, c. generic/transferable skills 6. use professional literature, other sources of information, 7. to analyze the existing problems of the field and to propose approaches for solving them. 3. Description
● introduce students to the theory of random processes and stochastic analysis methods, in particular, to introduce Brownian motion, martingales, Markov processes, the construction of stochastic integral and Ito's formula.
4. Teaching and Learning Styles and Methods
1. lectures,
2. practical works using computer programs, 3. independent work with computer programs and literature. 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. 1st midterm exam with a maximum value of 4 points (20%). 2. 2nd midterm exam : presentation of a research paper with a maximum value of 4 points (20%). 3. Tests with a maximum value of 4 points (20%). 4. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Machine Learning-2 | 6 |
3rd semester
Contact hours - 4 hours/week
Lectures-4 hours/week, Individual work-8 hours/week
OPTIONAL
0105/Մ16
1. Purpose of the Course
▪ To teach probabilistic machine learning models and the implementation of these models in Python,
▪ To teach modeling large amounts of data and using machine learning models to make predictions based on that data. 2. Educational Outcomes
a. professional knowledge and expertise
1. build an appropriate probabilistic model that characterizes the structure of the data, 2. compare different machine learning models to choose the best one, b. practical professional skills 3. to program in Python 4. use standard machine learning libraries to make model-based inferences, make predictions based on different models, and estimate the degree of uncertainty of these predictions, 5. apply different methods to compare probabilistic models and choose the best one, c. generic/transferable skills 6. use various sources of information. 3. Description
▪ To teach probabilistic machine learning models and the implementation of these models in Python,
▪ To teach modeling large amounts of data and using machine learning models to make predictions based on that data. 4. Teaching and Learning Styles and Methods
1. theoretical lectures, practical work with computers,
2. Individual and team assignments for students. 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. 1st midterm exam with a maximum value of 4 points (20%). 2. 2nd midterm exam : presentation of a research paper with a maximum value of 4 points (20%). 3. Tests with a maximum value of 4 points (20%). 4. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Deep learning | 6 |
3rd semester
Contact hours - 4 hours/week
Lectures-4 hours/week, Individual work-8 hours/week
OPTIONAL
0105/Մ16
1. Purpose of the Course
● To introduce neural networks, convolutional and recurrent structure of networks, deep unsupervised learning and their applications in voice and image recognition problems.
2. Educational Outcomes
a. professional knowledge and expertise
1. classify neural networks, 2. describe the structure of basic neural networks, 3. distinguish between supervised and unsupervised learning, b. practical professional skills 4. build programs using deep learning algorithms and train them, 5. solving image recognition problems with the help of convolutional and recurrent networks, c. generic/transferable skills 6. work in a team 7. effectively apply computer skills. 3. Description
● To introduce neural networks, convolutional and recurrent structure of networks, deep unsupervised learning and their applications in voice and image recognition problems.
4. Teaching and Learning Styles and Methods
1. lectures,
2. practical exercises, 3. implementation of a group project. 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. 1st midterm exam with a maximum value of 4 points (20%). 2. 2nd midterm exam : presentation of a research paper with a maximum value of 4 points (20%). 3. Tests with a maximum value of 4 points (20%). 4. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Biostatistics | 6 |
3rd semester
Contact hours - 4 hours/week
Lectures-4 hours/week, Individual work-8 hours/week
OPTIONAL
0105/Մ16
1. Purpose of the Course
● to acquaint students with the main problems and methods of biostatistics.
2. Educational Outcomes
a. professional knowledge and expertise
1. distinguish between methods and models, b. practical professional skills 2. present the choice of the most appropriate model/method in the given situation, c. generic/transferable skills 3. to use different sources of information. 3. Description
● to acquaint students with the main problems and methods of biostatistics.
4. Teaching and Learning Styles and Methods
1. lectures,
2. practical works using computer programs 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. 1st midterm exam with a maximum value of 4 points (20%). 2. 2nd midterm exam : presentation of a research paper with a maximum value of 4 points (20%). 3. Tests with a maximum value of 4 points (20%). 4. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Graph neural networks | 3 |
4th semester
Contact hours - 4 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
OPTIONAL
0105/Մ17
1. Purpose of the Course
· provide deep insight into machine learning graph-based representations;
· equip students with the ability to solve real-world problems using graph algorithms and techniques; · apply machine learning tools to extract insights from large graphs of social, technological and biological systems. 2. Educational Outcomes
a. professional knowledge and expertise
1. effectively analyze and interpret graph data structures; b. practical professional skills 2. implement graph neural networks (GNN) for various machine learning problems, 3. evaluate and select appropriate graph-based techniques for specific applications. 3. Description
· provide deep insight into machine learning graph-based representations;
· equip students with the ability to solve real-world problems using graph algorithms and techniques; · apply machine learning tools to extract insights from large graphs of social, technological and biological systems. 4. Teaching and Learning Styles and Methods
1. theoretical lectures, practical work with computers,
2. completion of individual/team assignments. 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. Tests with a maximum value of 6 points (30%). 2. Independent work with a maximum value of 6 points (30%). 3. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Digital signal processing | 3 |
3rd semester
Contact hours - 2 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
OPTIONAL
0105/Մ17
1. Purpose of the Course
· To introduce the fundamentals of digital signal processing theory, Fourier transform, structure of filters, discuss the design and implementation of digital filters.
· To present applications of digital signal processing theory using software packages. 2. Educational Outcomes
a. professional knowledge and expertise
1. describe the relationship between digital filters and differential equations, 2. introduce the Fourier transform and its inverse, 3. explain the principles of discrete Fourier transform, b. practical professional skills 4. apply well-known filters and data analysis algorithms according to their characteristics in practical problems, 5. use the Fourier analysis of stochastic signals, 6. apply software packages for numerical analysis problems, c. generic/transferable skills 7. make use of professional literature, other sources of information. 3. Description
· To introduce the fundamentals of digital signal processing theory, Fourier transform, structure of filters, discuss the design and implementation of digital filters.
· To present applications of digital signal processing theory using software packages. 4. Teaching and Learning Styles and Methods
1. lectures,
2. team work, 3. individual work. 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. Tests with a maximum value of 6 points (30%). 2. Independent work with a maximum value of 6 points (30%). 3. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Մեքենայական ուսուցման նախագծերի կառավարում | 3 |
2-րդ՝ աշնանային կիսամյակ
Լսարանային ժամեր-շաբաթական 2 ժամ
2 ժամ դասախոսություն, շաբաթական 4 ժամ ինքնուրույն աշխատանք
OPTIONAL
0105/Մ17
1. Purpose of the Course
● ներկայացնել արտադրանքի ղեկավարների հիմնական պարտականությունները,
● սովորեցնել հարմարեցնել շուկայավարման հետազոտության մեթոդները տարբեր տեսակի ապրանքների համար, ● սովորեցնել արտադրանքի կառավարման մեջ օգտագործվող հիմնական շրջանակները, հասկացությունները և մոդելները, ● սովորեցնել ֆինանսական պլանավորում նոր ապրանքների և արտադրանքի պորտֆելի համար։ 2. Educational Outcomes
ա. մասնագիտական գիտելիք և իմացություն
1. կատարել ֆինանսական պլանավորում նոր ապրանքների և արտադրանքի պորտֆելի համար, բ. գործնական մասնագիտական կարողություններ 2. կիրառել դիզայնի մտածողությունը արտադրանքի կառավարման համատեքստում, 3. օգտագործել հաճախորդների կարծիքը արտադրանքի կառավարման գործընթացներում, 4. օգտագործել տարբեր մեթոդներ՝ նոր ապրանքների համար գաղափարներ առաջացնելու համար, գ. ընդհանրական/փոխանցելի կարողություններ 5. վերլուծել առկա խնդիրները, առաջարկել լուծման մեթոդներ, 6. օգտվել տեղեկատվության տարատեսակ աղբյուրներից։ 3. Description
● ներկայացնել արտադրանքի ղեկավարների հիմնական պարտականությունները,
● սովորեցնել հարմարեցնել շուկայավարման հետազոտության մեթոդները տարբեր տեսակի ապրանքների համար, ● սովորեցնել արտադրանքի կառավարման մեջ օգտագործվող հիմնական շրջանակները, հասկացությունները և մոդելները, ● սովորեցնել ֆինանսական պլանավորում նոր ապրանքների և արտադրանքի պորտֆելի համար։ 4. Teaching and Learning Styles and Methods
1. դասախոսություն,
2. պրակտիկ աշխատանքներ, օգտագործելով համակարգչային ծրագրերը, 3. ինքնուրույն աշխատանք համակարգչային ծրագրերով և գրականության հետ: 5. Evaluation Methods and Criteria
Դասընթացը գնահատվում է առավելագույնը 20 միավոր.
1. Ընթացիկ ստուգում(ներ)՝ 6 միավոր առավելագույն արժեքով (30%), 2. Ինքնուրույն աշխատանք՝ 6 միավոր առավելագույն արժեքով (30%), 3. Եզրափակիչ քննություն՝ 8 միավոր առավելագույն արժեքով (40%)։ 6. Basic Bibliography
7. Main sections of the course
● Ապրանքի մենեջերը որպես ընկերությունում պաշտոն. պարտականությունները և որակավորումը:
● Արտադրանքի համար գաղափարների և վարկածների մշակում ● Արտադրանքի կառավարման կյանքի ցիկլի մոդելը և արտադրանքի գլխավոր պլանը ● Շուկայի վերլուծություն և հաճախորդների կարծիքն արտադրանքի մենեջերի համար ● Դիզայնի մտածողությունը արտադրանքի կառավարման մեջ ● Ֆինանսներ և կանխատեսումներ արտադրանքի մենեջերի համար |
||
0105 | Machine Learning in Healthcare | 3 |
3rd semester
Contact hours - 2 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
OPTIONAL
0105/Մ17
1. Purpose of the Course
● To introduce students to the applications of statistics and machine learning, particularly deep learning, in healthcare.
2. Educational Outcomes
a. professional knowledge and expertise
1. formulate real algorithmic problems of medicine/drug production, b. practical professional skills 2. solve real algorithmic problems of medicine/drug production, c. generic/transferable skills 3. use the latest methods of machine learning and statistics to solve the above problems. 3. Description
● To introduce students to the applications of statistics and machine learning, particularly deep learning, in healthcare.
4. Teaching and Learning Styles and Methods
1. lectures,
2. practical exercises 3. guest lectures by industry experts. 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. Tests with a maximum value of 6 points (30%). 2. Independent work with a maximum value of 6 points (30%). 3. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Additional chapters of statistics | 3 |
3rd semester
Contact hours - 2 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
OPTIONAL
0105/Մ17
1. Purpose of the Course
▪ To describe basic methods of random number generation, Monte Carlo and non-parametric statistics;
▪ to give knowledge about generalized linear models, model selection. 2. Educational Outcomes
a. professional knowledge and expertise
1. describe random number generation methods; 2. describe the main methods of non-parametric statistics, 3. compare and select the appropriate statistical model, b. practical professional skills 4. Perform various calculations with the help of Monte Carlo simulations, Bootstrap methods, 5. estimate density and distribution functions without assuming that they are from any parametric class, 6. to solve specific application problems with the help of the R language, c. generic/transferable skills 7. analyze existing problems, propose mathematical models, ways of solving them. 3. Description
▪ To describe basic methods of random number generation, Monte Carlo and non-parametric statistics;
▪ to give knowledge about generalized linear models, model selection. 4. Teaching and Learning Styles and Methods
1. theoretical lectures, practical work with computers,
2. Completion of individual/team assignments. 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. 1st midterm exam with a maximum value of 4 points (20%). 2. 2nd midterm exam : presentation of a research paper with a maximum value of 4 points (20%). 3. Tests with a maximum value of 4 points (20%). 4. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
||
0105 | Reinforcement learning | 3 |
3rd semester
Contact hours - 4 hours/week
Lectures-2 hours/week, Individual work-4 hours/week
OPTIONAL
0105/Մ17
1. Purpose of the Course
· to teach building reinforcement learning models and implementing these models in Python,
· To introduce dynamic programming and Monte Carlo methods. 2. Educational Outcomes
a. professional knowledge and expertise
1. reformulate problems as Markov decision processes, 2. build an appropriate reinforcement learning model that characterizes the environment, rewards appropriately depending on the action performed, b. practical professional skills 3. use dynamic programming as an effective solution approach to the problem of industrial management, 4. use reinforcement learning models to program in Python and make inferences based on that models, c. generic/transferable skills 5. analyze existing problems, propose mathematical models, 6. use various sources of information. 3. Description
· to teach building reinforcement learning models and implementing these models in Python,
· To introduce dynamic programming and Monte Carlo methods. 4. Teaching and Learning Styles and Methods
1. lectures,
2. practical work using computer programs, 3. independent work with computer programs and literature. 5. Evaluation Methods and Criteria
The course is evaluated for a maximum of 20 points.
1. Tests with a maximum value of 6 points (30%). 2. Individual work with a maximum value of 6 points (30%). 3. Final exam with a maximum value of 8 points (40%). 6. Basic Bibliography
|
Other educational modules
Chair code | Name of the course | Credits |
---|---|---|
0105 | Scientific Seminar | 12 |
1-4 semesters
Contact hours - 2 hours/week
Seminar-2 hours/week, Individual work-4 hours/week
MANDATORY
0105/Մ18
1. Purpose of the Course
· introduce the basics of probability theory
· Learn the basics of data visualization · Introduce students to current trends in machine learning · Show the range of applications of the obtained knowledge in Armenian companies · Create an opportunity to learn about the problems of industry representatives and work on their problems. 2. Educational Outcomes
a. professional knowledge and expertise
1. represent complex structured data in an understandable way, 2. use probability theory in statistics and machine learning, b. practical professional abilities 3. use the Matplotlib package to plot the data, 4. calculate the probabilities of various events. 3. Description
· introduce the basics of probability theory
· Learn the basics of data visualization · Introduce students to current trends in machine learning · Show the range of applications of the obtained knowledge in Armenian companies · Create an opportunity to learn about the problems of industry representatives and work on their problems. 4. Teaching and Learning Styles and Methods
1. Presentations - with Power point materials
2. Practical works - in computer classrooms 5. Evaluation Methods and Criteria
The test is conducted by questionnaires with a maximum value of 20 points. Students who get 10 or more points in the 20-point system from the test will be considered to have passed the test.
|
||
0105 | Scientific Seminar | 12 |
1-4 semesters
Contact hours - 2 hours/week
Seminar-2 hours/week, Individual work-4 hours/week
MANDATORY
0105/Մ18
1. Purpose of the Course
· introduce the basics of probability theory
· Learn the basics of data visualization · Introduce students to current trends in machine learning · Show the range of applications of the obtained knowledge in Armenian companies · Create an opportunity to learn about the problems of industry representatives and work on their problems. 2. Educational Outcomes
a. professional knowledge and expertise
1. represent complex structured data in an understandable way, 2. use probability theory in statistics and machine learning, b. practical professional abilities 3. use the Matplotlib package to plot the data, 4. calculate the probabilities of various events. 3. Description
· introduce the basics of probability theory
· Learn the basics of data visualization · Introduce students to current trends in machine learning · Show the range of applications of the obtained knowledge in Armenian companies · Create an opportunity to learn about the problems of industry representatives and work on their problems. 4. Teaching and Learning Styles and Methods
1. Presentations - with Power point materials
2. Practical works - in computer classrooms 5. Evaluation Methods and Criteria
The test is conducted by questionnaires with a maximum value of 20 points. Students who get 10 or more points in the 20-point system from the test will be considered to have passed the test.
|
||
0105 | Scientific Seminar | 12 |
1-4 semesters
Contact hours - 2 hours/week
Seminar-2 hours/week, Individual work-4 hours/week
MANDATORY
0105/Մ18
1. Purpose of the Course
· introduce the basics of probability theory
· Learn the basics of data visualization · Introduce students to current trends in machine learning · Show the range of applications of the obtained knowledge in Armenian companies · Create an opportunity to learn about the problems of industry representatives and work on their problems. 2. Educational Outcomes
a. professional knowledge and expertise
1. represent complex structured data in an understandable way, 2. use probability theory in statistics and machine learning, b. practical professional abilities 3. use the Matplotlib package to plot the data, 4. calculate the probabilities of various events. 3. Description
· introduce the basics of probability theory
· Learn the basics of data visualization · Introduce students to current trends in machine learning · Show the range of applications of the obtained knowledge in Armenian companies · Create an opportunity to learn about the problems of industry representatives and work on their problems. 4. Teaching and Learning Styles and Methods
1. Presentations - with Power point materials
2. Practical works - in computer classrooms 5. Evaluation Methods and Criteria
The test is conducted by questionnaires with a maximum value of 20 points. Students who get 10 or more points in the 20-point system from the test will be considered to have passed the test.
|
||
0105 | Professional Practice | 6 |
3rd semester
6 weeks
180 hours of independent work
MANDATORY
0105/Մ22
1. Purpose of the Course
● To develop skills and abilities to solve practical problems and to work in the professional enviroment.
2. Educational Outcomes
a. professional knowledge and expertise
1. build algorithms for problems requiring a solution within the framework of practice 2. apply theoretical knowledge to improve the given algorithm b. practical professional skills 3. process the data to get rid of noise 4. save the received data in a format more convenient for use and application c. generic/transferable skills 5. collaborate with different people to solve the given problem 3. Description
● To develop skills and abilities to solve practical problems and to work in the professional enviroment.
4. Teaching and Learning Styles and Methods
1. Presentations - with Power point materials,
2. Practical works - in computer classrooms. 5. Evaluation Methods and Criteria
Practice is assessed in the form of a test. Internship is evaluated positively (Pass) if the student participated in the internship, completed the tasks provided by the program, submitted the internship diary within the specified period.
6. Basic Bibliography
|
||
0105 | Scientific Seminar | 12 |
1-4 semesters
Contact hours - 2 hours/week
Seminar-2 hours/week, Individual work-4 hours/week
MANDATORY
0105/Մ18
1. Purpose of the Course
· introduce the basics of probability theory
· Learn the basics of data visualization · Introduce students to current trends in machine learning · Show the range of applications of the obtained knowledge in Armenian companies · Create an opportunity to learn about the problems of industry representatives and work on their problems. 2. Educational Outcomes
a. professional knowledge and expertise
1. represent complex structured data in an understandable way, 2. use probability theory in statistics and machine learning, b. practical professional abilities 3. use the Matplotlib package to plot the data, 4. calculate the probabilities of various events. 3. Description
· introduce the basics of probability theory
· Learn the basics of data visualization · Introduce students to current trends in machine learning · Show the range of applications of the obtained knowledge in Armenian companies · Create an opportunity to learn about the problems of industry representatives and work on their problems. 4. Teaching and Learning Styles and Methods
1. Presentations - with Power point materials
2. Practical works - in computer classrooms 5. Evaluation Methods and Criteria
The test is conducted by questionnaires with a maximum value of 20 points. Students who get 10 or more points in the 20-point system from the test will be considered to have passed the test.
|
||
0105 | ---- | 24 |
4th semester
Hours of independent work: 720 hours
MANDATORY
0105/Մ23
1. Purpose of the Course
· To familiarize the student with the literature related to the given problem
· To guide the student to solve the problem by collecting and applying algorithms and data needed to solve the given problem · To teach to formulate the results · To develop presentation skills 2. Educational Outcomes
b. creative professional abilities
1. Collect and clean data 2. Develop algorithms for solving the given problem c. generic/transferable skills 3. Do research work 4. Present the results obtained by him 5. Use literature 3. Description
· To familiarize the student with the literature related to the given problem
· To guide the student to solve the problem by collecting and applying algorithms and data needed to solve the given problem · To teach to formulate the results · To develop presentation skills 4. Evaluation Methods and Criteria
The thesis is evaluated for a maximum of 20 points.
The following components will be taken into account when evaluating the thesis : 1. Independence 2. Novelty 3. Paper quality 4. Presentation quality |