Admission Questionnaire of the M/M&A Programme, 2024
Mathematics and Applications
Admission requirements are available here.
MATHEMATICAL ANALYSIS
- Subsequence and partial limit. Existence of upper and lower limits of the sequence. Bolzano-Weierstrass lemma
- Cauchy's congruence principle for sequences
- Intermediate values of a continuous function on a segment. Boundedness.
- Uniform continuity, Cantor's theorem
- Lagrange's theorem, the formula for finite increments
- Definite integral. the necessary and sufficient condition of existence, classes of integrable functions. Newton-Leibniz formula
- Differentiability for multivariable functions and convergence of series with positive terms
- Functional properties of the sum of a functional series
- Power series, Cauchy-Hadamard formula
- Taylor series
- Functions of bounded variation, necessary and sufficient condition
- Complex differentiation. Cauchy-Riemann conditions
- Derivation of Cauchy's integral formula
- Power series expansions of analytic functions
- Remainder, the main theorem of the theory of remainders
- Continuity of the Lebesgue measure
- Definition, correctness of the Lebesgue integral
- Passage of the limit under the Lebesgue integral sign
- Absolute continuous functions.
LITERATURE
[M1] Մուսոյան Վ. Խ., Մաթեմատիկական անալիզ, I մաս, 2009
[M2] Մուսոյան Վ. Խ., Մաթեմատիկական անալիզ, II մաս, 2012
[F1] Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, I, 2009
[F2] Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, II, 2009
[F3] Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, III, 2009
[1] Маркушевич А. И., Краткий курс теории аналитических функции, М., 1978.
[2] Шабат Б. В., Введение в комплексный анализ, М., 1969.
[3] Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, М., 2001
DIFFERENTIAL EQUATIONS AND FUNCTIONAL ANALYSIS
- Cauchy problem for ordinary differential equations, solution existence and uniqueness theorems (without proof)
- Solving linear homogeneous differential equations with constant coefficients ([1], page 73). Proof for simple roots
- Solving linear normal inhomogeneous equations by the method of variation of constants
- Lyapunov's theorem on the stability of the equilibrium position (without proof)
- Contraction mapping principle
- Hilbert space, orthonormal systems, extremal property
- Linear operator, limit, continuity, norm
- Theorem of Banach-Steinhaus, consequences, (mark of congruence)
LITERATURE
[1] Ղազարյան Հ.Գ., Հովհաննիսյան Ա.Հ., Հարությունյան Տ.Ն., Կարապետյան Գ.Ա., Սովորական դիֆերենցիալ հավասարումներ, Երևան, 2002։
[2] Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, «Наука», Москва 1976 г.
[3] Люстерник Л. А., Соболев В. И., «Элементы функционального анализа», Москва
ALGEBRA AND GEOMETRY
- The determinant of the product of matrices
- Invertible matrix. The formula for calculating the inverse matrix. Cramer's formulas
- Greatest common divisor of polynomials. Euclid's algorithm
- Polynomial analysis of the product of irreducible polynomials
- Rank of a system of vectors in a linear space. Basis and dimension of a linear space
- Criterion for isomorphism of finite-dimensional linear spaces. Dimension of sum of subspaces and direct sum
- The relation between the kernel and image of a linear map
- Gram-Schmidt orthogonalization algorithm. The isomorphism criterion of Euclidean spaces
- Dot, vector and mixed products of vectors. Equations of lines and planes in space. The distance of the point from the line
- Ellipse, hyperbola and parabola
- The general equation of the plane. The distance of the point from the plane
LITERATURE
[1] Մովսիսյան Յու.Մ., Բարձրագույն հանրահաշիվ և թվերի տեսություն, 2023:
[2] Александров П.Г., Курс аналитической геометрии, М..
[3] Փիլիպոսյան Վ.Ա., Օհնիկյան Հ.Հ., Վերլուծական երկրաչափության խնդրագիրք Երևան, 2012, մաս I, II.
[4] Աթաբեկյան Վ. Հանրահաշվի ներածություն 2005:
PROBABILITY THEORY AND MATHEMATICAL STATISTICS
- Axioms of probability
- Conditional probability, independence of events. Full Probability and Bayes Formulas
- Independent experiments. Bernoulli's formula. A random variable. Distribution function and its properties. Independence of random variables (no proof)
- The mathematical expectation and variance of a random variable
- The law of large numbers. Markov and Chebyshev theorems
- Central limit theorem for independent and uniformly distributed random variables
- Sampling distribution function. Glivenko's theorem
- The Rao-Kramer inequality and efficient estimates
- Methods of moments and maximum likelihood
- Confidence intervals for parameters of normal and Bernoulli distributions
LITERATURE
[1] Համբարձումյան Գ.Հ., Հավանականությունների տեսություն, Լույս, 1977:
[2] Боровков А.А.,Теория вероятностей, М., 2006.
[3] Ширяев А.Н., Вероятность, М., Наука, 2011.
[4] Հարությունյան Ե. և ուրիշներ, Հավանականություն և կիրառական վիճակագրություն, Եր. 2000.
[5] Боровков А.А. , Математическая статистика. Оценка параметров. Проверка гипотез, М. 1984.